This commit is contained in:
Christian Anetzberger
2026-01-22 20:23:51 +01:00
commit a197de9456
4327 changed files with 1235205 additions and 0 deletions

View File

@@ -0,0 +1,417 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Internal STEP sheet metal analyser
- Input: ./test.step
- Unfold with K-factor = 0.5
- Auto-detect thickness if not provided
- Export:
- flat.dxf
- result.json
- debug_last.FCStd
"""
import os
import sys
import json
import argparse
import traceback
from datetime import datetime
# -----------------------------
# Configuration
# -----------------------------
K_FACTOR = 0.5
K_STANDARD = "ansi"
DENSITY_KG_M3 = {
"alu": 2700.0,
"aluminum": 2700.0,
"stainless": 8000.0,
"edelstahl": 8000.0,
"copper": 8960.0,
"kupfer": 8960.0,
}
# -----------------------------
# Helpers
# -----------------------------
def mm2_to_m2(x):
return x / 1_000_000.0
def mm_to_m(x):
return x / 1000.0
def pick_main_object(doc):
candidates = []
for obj in doc.Objects:
if hasattr(obj, "Shape") and obj.Shape:
try:
if obj.Shape.Solids:
candidates.append((float(obj.Shape.Volume), obj))
except Exception:
pass
if not candidates:
raise RuntimeError("No solid object found in STEP.")
candidates.sort(key=lambda x: x[0], reverse=True)
return candidates[0][1]
def pick_root_face_index(shape):
planar = []
all_faces = []
for i, face in enumerate(shape.Faces, start=1):
try:
area = float(face.Area)
except Exception:
area = 0.0
all_faces.append((area, i, face))
try:
surf = face.Surface
if surf and "plane" in surf.__class__.__name__.lower():
planar.append((area, i, face))
except Exception:
pass
if planar:
planar.sort(key=lambda x: x[0], reverse=True)
return planar[0][1], True
all_faces.sort(key=lambda x: x[0], reverse=True)
return all_faces[0][1], False
def compute_bbox_mm(shape):
bb = shape.BoundBox
return float(bb.XLength), float(bb.YLength)
def estimate_thickness_mm_from_solid(part_obj, max_faces=60):
"""
Robust thickness estimation for sheet-metal solids:
- Collect planar faces
- Cluster by (normalized) face normal direction
- For each cluster, compute plane offsets d = n·p for face points
- Thickness candidates are small positive differences between distinct d values
- Fallback: use distToShape on representative face pairs
Returns thickness in mm or None.
"""
import math
import Part
shape = part_obj.Shape
# --- helpers ---
def vec_to_tuple(v):
return (float(v.x), float(v.y), float(v.z))
def norm(v):
l = math.sqrt(v.x*v.x + v.y*v.y + v.z*v.z)
if l <= 1e-12:
return None
return v.multiply(1.0 / l)
def canonical_normal(n):
"""
Make the normal direction canonical so +n and -n map consistently:
Flip so the first significant component is positive.
"""
# convert to tuple for easier checks
x, y, z = float(n.x), float(n.y), float(n.z)
# find first component with magnitude > eps
eps = 1e-9
if abs(x) > eps:
if x < 0: return n.multiply(-1)
elif abs(y) > eps:
if y < 0: return n.multiply(-1)
elif abs(z) > eps:
if z < 0: return n.multiply(-1)
return n
def angle_close(n1, n2, cos_tol):
# cos(angle) = n1·n2
return (n1.dot(n2) >= cos_tol)
def face_midpoint(face):
u0, u1, v0, v1 = face.ParameterRange
return face.valueAt((u0+u1)*0.5, (v0+v1)*0.5), face.normalAt((u0+u1)*0.5, (v0+v1)*0.5)
# --- collect planar faces ---
planar = []
for face in shape.Faces:
try:
surf = face.Surface
if not (surf and "plane" in surf.__class__.__name__.lower()):
continue
area = float(face.Area)
if area < 1.0: # mm², ignore tiny faces
continue
p, n = face_midpoint(face)
n = norm(n)
if n is None:
continue
n = canonical_normal(n)
d = float(n.dot(p)) # plane offset for n·x = d
planar.append((area, face, n, d))
except Exception:
continue
if not planar:
return None
planar.sort(key=lambda x: x[0], reverse=True)
planar = planar[:max_faces]
# --- cluster by normal direction ---
# Tolerance: within ~2 degrees
cos_tol = math.cos(math.radians(2.0))
clusters = [] # each: {"n": normal, "faces": [(area, face, d), ...]}
for area, face, n, d in planar:
placed = False
for c in clusters:
if angle_close(n, c["n"], cos_tol):
c["faces"].append((area, face, d))
placed = True
break
if not placed:
clusters.append({"n": n, "faces": [(area, face, d)]})
# --- build thickness candidates from d-values inside each cluster ---
# For a sheet, same-normal planes occur at (outer) and (inner) offsets,
# so distinct d-values differ ~thickness.
candidates = []
def add_candidate(val):
if 0.05 <= val <= 20.0: # mm range guard (tune if needed)
candidates.append(val)
for c in clusters:
ds = [d for _a, _f, d in c["faces"]]
if len(ds) < 2:
continue
ds.sort()
# unique d-values with binning (0.01 mm)
uniq = []
for d in ds:
b = round(d / 0.01) * 0.01
if not uniq or abs(b - uniq[-1]) > 1e-9:
uniq.append(b)
if len(uniq) < 2:
continue
# candidate: smallest positive gap between uniq planes
# Often thickness is the smallest meaningful separation.
for i in range(1, len(uniq)):
gap = abs(uniq[i] - uniq[i-1])
add_candidate(gap)
# --- if candidates exist, pick most frequent bin (mode-ish) ---
def pick_mode(vals, bin_size=0.01):
bins = {}
for x in vals:
b = round(x / bin_size) * bin_size
bins.setdefault(b, []).append(x)
best_bin = max(bins.items(), key=lambda kv: len(kv[1]))[0]
bucket = sorted(bins[best_bin])
return bucket[len(bucket)//2]
if candidates:
return pick_mode(candidates, 0.01)
# --- Fallback: distToShape between face pairs in same normal cluster ---
# Slower but can rescue cases where d-values are too noisy.
# We try only top clusters and top faces.
try:
for c in clusters[:6]:
faces = sorted(c["faces"], key=lambda t: t[0], reverse=True)[:8]
# compare each face to others in same cluster; minimal non-zero distance tends to thickness
for i in range(len(faces)):
fi = faces[i][1]
for j in range(i+1, len(faces)):
fj = faces[j][1]
dist = fi.distToShape(fj)[0] # returns (dist, pts, info)
if dist and dist > 0.05 and dist <= 20.0:
candidates.append(float(dist))
if candidates:
return pick_mode(candidates, 0.01)
except Exception:
pass
return None
# -----------------------------
# Main
# -----------------------------
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--material", required=True, help="alu | stainless | copper")
parser.add_argument("--thickness-mm", required=False, type=float, default=None,
help="Optional sheet thickness in mm (auto-detect if omitted)")
args = parser.parse_args()
material_key = args.material.strip().lower()
if material_key not in DENSITY_KG_M3:
raise SystemExit(f"Unknown material '{args.material}'")
density = DENSITY_KG_M3[material_key]
cwd = os.getcwd()
step_path = os.path.join(cwd, "03341791-01_01.step")
out_dxf = os.path.join(cwd, "03341791-01_01.dxf")
out_json = os.path.join(cwd, "03341791-01_01-result.json")
out_fcstd = os.path.join(cwd, "debug_last.FCStd")
print("=== STEPANALYSER START ===", flush=True)
print("Material:", material_key, "Density:", density, flush=True)
if not os.path.exists(step_path):
raise SystemExit("STEP File not found not found in working directory")
import FreeCAD as App
import Import
import importDXF
try:
import SheetMetalNewUnfolder
from SheetMetalNewUnfolder import BendAllowanceCalculator
HAS_V2 = True
except Exception:
HAS_V2 = False
try:
import SheetMetalUnfolder
HAS_V1 = True
except Exception:
HAS_V1 = False
if not HAS_V1 and not HAS_V2:
raise SystemExit("No SheetMetal unfolder available")
doc = App.newDocument("StepAnalyser")
warnings = []
try:
Import.insert(step_path, doc.Name)
doc.recompute()
part_obj = pick_main_object(doc)
face_idx, planar = pick_root_face_index(part_obj.Shape)
base_face = f"Face{face_idx}"
thickness_mm = args.thickness_mm
if thickness_mm is None:
print("Auto-detecting thickness...", flush=True)
thickness_mm = estimate_thickness_mm_from_solid(part_obj)
if thickness_mm is None:
raise RuntimeError("Could not auto-detect thickness")
print(f"Detected thickness: {thickness_mm:.3f} mm", flush=True)
unfolded_shape = None
sketches = []
if HAS_V2:
try:
bac = BendAllowanceCalculator.from_single_value(K_FACTOR, K_STANDARD)
sel_face, unfolded_shape, bend_lines, root_normal = \
SheetMetalNewUnfolder.getUnfold(bac, part_obj, base_face)
sketches = SheetMetalNewUnfolder.getUnfoldSketches(
"Unfold", sel_face, unfolded_shape, bend_lines,
root_normal, [], False, "#000080", "#c00000", "#ff5733"
)
except Exception:
warnings.append("V2 unfold failed")
if unfolded_shape is None and HAS_V1:
ktable = {1: K_FACTOR}
unfolded_shape, foldComp, norm, *_ = \
SheetMetalUnfolder.getUnfold(ktable, part_obj, base_face, K_STANDARD)
sketches = SheetMetalUnfolder.getUnfoldSketches(
"Unfold", unfolded_shape, foldComp.Edges,
norm, [], False, "#000080",
bendSketchColor="#ff5733", internalSketchColor="#c00000"
)
if unfolded_shape is None or not sketches:
raise RuntimeError("Unfold failed")
importDXF.export(sketches, out_dxf)
bbox_w, bbox_h = compute_bbox_mm(unfolded_shape)
area_bbox_mm2 = bbox_w * bbox_h
area_net_mm2 = float(unfolded_shape.Area)
t_m = mm_to_m(thickness_mm)
area_bbox_m2 = mm2_to_m2(area_bbox_mm2)
area_net_m2 = mm2_to_m2(area_net_mm2)
mass_bbox_kg = area_bbox_m2 * t_m * density
mass_net_kg = area_net_m2 * t_m * density
result = {
"ok": True,
"timestamp": datetime.now().isoformat(timespec="seconds"),
"input": {
"material": material_key,
"density_kg_m3": density,
"thickness_mm": thickness_mm,
"k_factor": K_FACTOR
},
"flat": {
"bbox_mm": {"width": bbox_w, "height": bbox_h},
"area_bbox_mm2": area_bbox_mm2,
"area_net_mm2": area_net_mm2
},
"weight": {
"bbox_kg": mass_bbox_kg,
"net_kg": mass_net_kg
},
"warnings": warnings
}
with open(out_json, "w") as f:
json.dump(result, f, indent=2)
doc.saveAs(out_fcstd)
print("OK: flat.dxf + result.json written", flush=True)
except Exception as e:
try:
doc.saveAs(out_fcstd)
except Exception:
pass
err = {
"ok": False,
"error": str(e),
"traceback": traceback.format_exc()
}
with open(out_json, "w") as f:
json.dump(err, f, indent=2)
print("ERROR:", e, flush=True)
print(traceback.format_exc(), flush=True)
os._exit(1)
os._exit(0)
if __name__ == "__main__":
main()