# cython: language_level=3 # Copyright (c) 2021-2024 Manfred Moitzi # License: MIT License from typing import TYPE_CHECKING, Sequence from .vector cimport Vec3, isclose, v3_dist, v3_lerp, v3_add, Vec2 from .matrix44 cimport Matrix44 import warnings if TYPE_CHECKING: from ezdxf.math import UVec __all__ = ['Bezier3P'] cdef extern from "constants.h": const double ABS_TOL const double REL_TOL cdef double RECURSION_LIMIT = 1000 cdef class Bezier3P: cdef: FastQuadCurve curve # pyright: ignore readonly Vec3 start_point Vec3 cp1 readonly Vec3 end_point def __cinit__(self, defpoints: Sequence[UVec]): if not isinstance(defpoints[0], (Vec2, Vec3)): warnings.warn( DeprecationWarning, "Bezier3P requires defpoints of type Vec2 or Vec3 in the future", ) if len(defpoints) == 3: self.start_point = Vec3(defpoints[0]) self.cp1 = Vec3(defpoints[1]) self.end_point = Vec3(defpoints[2]) self.curve = FastQuadCurve( self.start_point, self.cp1, self.end_point ) else: raise ValueError("Three control points required.") @property def control_points(self) -> tuple[Vec3, Vec3, Vec3]: return self.start_point, self.cp1, self.end_point def __reduce__(self): return Bezier3P, (self.control_points,) def point(self, double t) -> Vec3: if 0.0 <= t <= 1.0: return self.curve.point(t) else: raise ValueError("t not in range [0 to 1]") def tangent(self, double t) -> Vec3: if 0.0 <= t <= 1.0: return self.curve.tangent(t) else: raise ValueError("t not in range [0 to 1]") def approximate(self, int segments) -> list[Vec3]: cdef double delta_t cdef int segment cdef list points = [self.start_point] if segments < 1: raise ValueError(segments) delta_t = 1.0 / segments for segment in range(1, segments): points.append(self.point(delta_t * segment)) points.append(self.end_point) return points def flattening(self, double distance, int segments = 4) -> list[Vec3]: cdef double dt = 1.0 / segments cdef double t0 = 0.0, t1 cdef _Flattening f = _Flattening(self, distance) cdef Vec3 start_point = self.start_point cdef Vec3 end_point while t0 < 1.0: t1 = t0 + dt if isclose(t1, 1.0, REL_TOL, ABS_TOL): end_point = self.end_point t1 = 1.0 else: end_point = self.curve.point(t1) f.reset_recursion_check() f.flatten(start_point, end_point, t0, t1) if f.has_recursion_error(): raise RecursionError( "Bezier3P flattening error, check for very large coordinates" ) t0 = t1 start_point = end_point return f.points def approximated_length(self, segments: int = 128) -> float: cdef double length = 0.0 cdef bint start_flag = 0 cdef Vec3 prev_point, point for point in self.approximate(segments): if start_flag: length += v3_dist(prev_point, point) else: start_flag = 1 prev_point = point return length def reverse(self) -> Bezier3P: return Bezier3P((self.end_point, self.cp1, self.start_point)) def transform(self, Matrix44 m) -> Bezier3P: return Bezier3P(tuple(m.transform_vertices(self.control_points))) cdef class _Flattening: cdef FastQuadCurve curve # pyright: ignore cdef double distance cdef list points cdef int _recursion_level cdef int _recursion_error def __cinit__(self, Bezier3P curve, double distance): self.curve = curve.curve self.distance = distance self.points = [curve.start_point] self._recursion_level = 0 self._recursion_error = 0 cdef has_recursion_error(self): return self._recursion_error cdef reset_recursion_check(self): self._recursion_level = 0 self._recursion_error = 0 cdef flatten( self, Vec3 start_point, Vec3 end_point, double start_t, double end_t ): if self._recursion_level > RECURSION_LIMIT: self._recursion_error = 1 return self._recursion_level += 1 cdef double mid_t = (start_t + end_t) * 0.5 cdef Vec3 mid_point = self.curve.point(mid_t) cdef double d = v3_dist(mid_point, v3_lerp(start_point, end_point, 0.5)) if d < self.distance: self.points.append(end_point) else: self.flatten(start_point, mid_point, start_t, mid_t) self.flatten(mid_point, end_point, mid_t, end_t) self._recursion_level -= 1 cdef class FastQuadCurve: cdef: double[3] offset double[3] p1 double[3] p2 def __cinit__(self, Vec3 p0, Vec3 p1, Vec3 p2): self.offset[0] = p0.x self.offset[1] = p0.y self.offset[2] = p0.z # 1st control point (p0) is always (0, 0, 0) self.p1[0] = p1.x - p0.x self.p1[1] = p1.y - p0.y self.p1[2] = p1.z - p0.z self.p2[0] = p2.x - p0.x self.p2[1] = p2.y - p0.y self.p2[2] = p2.z - p0.z cdef Vec3 point(self, double t): # 1st control point (p0) is always (0, 0, 0) # => p0 * a is always (0, 0, 0) cdef: Vec3 result = Vec3() # double a = (1 - t) ** 2 double b = 2.0 * t * (1.0 - t) double c = t * t iadd_mul(result, self.p1, b) iadd_mul(result, self.p2, c) # add offset at last - it is maybe very large result.x += self.offset[0] result.y += self.offset[1] result.z += self.offset[2] return result cdef Vec3 tangent(self, double t): # tangent vector is independent from offset location! cdef: Vec3 result = Vec3() # double a = -2 * (1 - t) double b = 2.0 - 4.0 * t double c = 2.0 * t iadd_mul(result, self.p1, b) iadd_mul(result, self.p2, c) return result cdef void iadd_mul(Vec3 a, double[3] b, double c): a.x += b[0] * c a.y += b[1] * c a.z += b[2] * c