# Copyright (c) 2012-2024, Manfred Moitzi # License: MIT License """ B-Splines ========= https://www.cl.cam.ac.uk/teaching/2000/AGraphHCI/SMEG/node4.html Rational B-splines ================== https://www.cl.cam.ac.uk/teaching/2000/AGraphHCI/SMEG/node5.html: "The NURBS Book" by Les Piegl and Wayne Tiller https://books.google.at/books/about/The_NURBS_Book.html?id=7dqY5dyAwWkC&redir_esc=y """ from __future__ import annotations from typing import ( Iterable, Iterator, Sequence, TYPE_CHECKING, Optional, ) import math import numpy as np from ezdxf.math import ( Vec3, UVec, NULLVEC, Basis, Evaluator, create_t_vector, estimate_end_tangent_magnitude, distance_point_line_3d, arc_angle_span_deg, ) from ezdxf.math import linalg from ezdxf.lldxf.const import DXFValueError if TYPE_CHECKING: from ezdxf.math import ( ConstructionArc, ConstructionEllipse, Matrix44, Bezier4P, ) __all__ = [ # High level functions: "fit_points_to_cad_cv", "global_bspline_interpolation", "local_cubic_bspline_interpolation", "rational_bspline_from_arc", "rational_bspline_from_ellipse", "fit_points_to_cubic_bezier", "open_uniform_bspline", "closed_uniform_bspline", # B-spline representation with derivatives support: "BSpline", # Low level interpolation function: "unconstrained_global_bspline_interpolation", "global_bspline_interpolation_end_tangents", "cad_fit_point_interpolation", "global_bspline_interpolation_first_derivatives", "local_cubic_bspline_interpolation_from_tangents", # Low level knot parametrization functions: "knots_from_parametrization", "averaged_knots_unconstrained", "averaged_knots_constrained", "natural_knots_unconstrained", "natural_knots_constrained", "double_knots", # Low level knot function: "required_knot_values", "uniform_knot_vector", "open_uniform_knot_vector", "required_fit_points", "required_control_points", ] def fit_points_to_cad_cv( fit_points: Iterable[UVec], tangents: Optional[Iterable[UVec]] = None, ) -> BSpline: """Returns a cubic :class:`BSpline` from fit points as close as possible to common CAD applications like BricsCAD. There exist infinite numerical correct solution for this setup, but some facts are known: - CAD applications use the global curve interpolation with start- and end derivatives if the end tangents are defined otherwise the equation system will be completed by setting the second derivatives of the start and end point to 0, for more information read this answer on stackoverflow: https://stackoverflow.com/a/74863330/6162864 - The degree of the B-spline is always 3 regardless which degree is stored in the SPLINE entity, this is only valid for B-splines defined by fit points - Knot parametrization method is "chord" - Knot distribution is "natural" Args: fit_points: points the spline is passing through tangents: start- and end tangent, default is autodetect """ # See also Spline class in ezdxf/entities/spline.py: points = Vec3.list(fit_points) if len(points) < 2: raise ValueError("two or more points required ") if tangents is None: control_points, knots = cad_fit_point_interpolation(points) return BSpline(control_points, order=4, knots=knots) t = Vec3.list(tangents) m1, m2 = estimate_end_tangent_magnitude(points, method="chord") start_tangent = t[0].normalize(m1) end_tangent = t[-1].normalize(m2) return global_bspline_interpolation( points, degree=3, tangents=(start_tangent, end_tangent), method="chord", ) def fit_points_to_cubic_bezier(fit_points: Iterable[UVec]) -> BSpline: """Returns a cubic :class:`BSpline` from fit points **without** end tangents. This function uses the cubic Bèzier interpolation to create multiple Bèzier curves and combine them into a single B-spline, this works for short simple splines better than the :func:`fit_points_to_cad_cv`, but is worse for longer and more complex splines. Args: fit_points: points the spline is passing through """ points = Vec3.list(fit_points) if len(points) < 2: raise ValueError("two or more points required ") from ezdxf.math import cubic_bezier_interpolation, bezier_to_bspline bezier_curves = cubic_bezier_interpolation(points) return bezier_to_bspline(bezier_curves) def global_bspline_interpolation( fit_points: Iterable[UVec], degree: int = 3, tangents: Optional[Iterable[UVec]] = None, method: str = "chord", ) -> BSpline: """`B-spline`_ interpolation by the `Global Curve Interpolation`_. Given are the fit points and the degree of the B-spline. The function provides 3 methods for generating the parameter vector t: - "uniform": creates a uniform t vector, from 0 to 1 evenly spaced, see `uniform`_ method - "chord", "distance": creates a t vector with values proportional to the fit point distances, see `chord length`_ method - "centripetal", "sqrt_chord": creates a t vector with values proportional to the fit point sqrt(distances), see `centripetal`_ method - "arc": creates a t vector with values proportional to the arc length between fit points. It is possible to constraint the curve by tangents, by start- and end tangent if only two tangents are given or by one tangent for each fit point. If tangents are given, they represent 1st derivatives and should be scaled if they are unit vectors, if only start- and end tangents given the function :func:`~ezdxf.math.estimate_end_tangent_magnitude` helps with an educated guess, if all tangents are given, scaling by chord length is a reasonable choice (Piegl & Tiller). Args: fit_points: fit points of B-spline, as list of :class:`Vec3` compatible objects tangents: if only two vectors are given, take the first and the last vector as start- and end tangent constraints or if for all fit points a tangent is given use all tangents as interpolation constraints (optional) degree: degree of B-spline method: calculation method for parameter vector t Returns: :class:`BSpline` """ _fit_points = Vec3.list(fit_points) count = len(_fit_points) order: int = degree + 1 if tangents: # two control points for tangents will be added count += 2 if order > count and tangents is None: raise ValueError(f"More fit points required for degree {degree}") t_vector = list(create_t_vector(_fit_points, method)) # natural knot generation for uneven degrees else averaged knot_generation_method = "natural" if degree % 2 else "average" if tangents is not None: _tangents = Vec3.list(tangents) if len(_tangents) == 2: control_points, knots = global_bspline_interpolation_end_tangents( _fit_points, _tangents[0], _tangents[1], degree, t_vector, knot_generation_method, ) elif len(_tangents) == len(_fit_points): ( control_points, knots, ) = global_bspline_interpolation_first_derivatives( _fit_points, _tangents, degree, t_vector ) else: raise ValueError( "Invalid count of tangents, two tangents as start- and end " "tangent constrains or one tangent for each fit point." ) else: control_points, knots = unconstrained_global_bspline_interpolation( _fit_points, degree, t_vector, knot_generation_method ) bspline = BSpline(control_points, order=order, knots=knots) return bspline def local_cubic_bspline_interpolation( fit_points: Iterable[UVec], method: str = "5-points", tangents: Optional[Iterable[UVec]] = None, ) -> BSpline: """`B-spline`_ interpolation by 'Local Cubic Curve Interpolation', which creates B-spline from fit points and estimated tangent direction at start-, end- and passing points. Source: Piegl & Tiller: "The NURBS Book" - chapter 9.3.4 Available tangent estimation methods: - "3-points": 3 point interpolation - "5-points": 5 point interpolation - "bezier": cubic bezier curve interpolation - "diff": finite difference or pass pre-calculated tangents, which overrides tangent estimation. Args: fit_points: all B-spline fit points as :class:`Vec3` compatible objects method: tangent estimation method tangents: tangents as :class:`Vec3` compatible objects (optional) Returns: :class:`BSpline` """ from .parametrize import estimate_tangents _fit_points = Vec3.list(fit_points) if tangents: _tangents = Vec3.list(tangents) else: _tangents = estimate_tangents(_fit_points, method) control_points, knots = local_cubic_bspline_interpolation_from_tangents( _fit_points, _tangents ) return BSpline(control_points, order=4, knots=knots) def required_knot_values(count: int, order: int) -> int: """Returns the count of required knot-values for a B-spline of `order` and `count` control points. Args: count: count of control points, in text-books referred as "n + 1" order: order of B-Spline, in text-books referred as "k" Relationship: "p" is the degree of the B-spline, text-book notation. - k = p + 1 - 2 ≤ k ≤ n + 1 """ k = int(order) n = int(count) - 1 p = k - 1 if not (2 <= k <= (n + 1)): raise DXFValueError("Invalid count/order combination") # n + p + 2 = count + order return n + p + 2 def required_fit_points(order: int, tangents=True) -> int: """Returns the count of required fit points to calculate the spline control points. Args: order: spline order (degree + 1) tangents: start- and end tangent are given or estimated """ if tangents: # If tangents are given or estimated two points for start- and end # tangent will be added automatically for the global bspline # interpolation. see function fit_points_to_cad_cv() order -= 2 # required condition: order > count, see global_bspline_interpolation() return max(order, 2) def required_control_points(order: int) -> int: """Returns the required count of control points for a valid B-spline. Args: order: spline order (degree + 1) Required condition: 2 <= order <= count, therefore: count >= order """ return max(order, 2) def normalize_knots(knots: Sequence[float]) -> list[float]: """Normalize knot vector into range [0, 1].""" min_val = knots[0] max_val = knots[-1] - min_val return [(v - min_val) / max_val for v in knots] def uniform_knot_vector(count: int, order: int, normalize=False) -> list[float]: """Returns an uniform knot vector for a B-spline of `order` and `count` control points. `order` = degree + 1 Args: count: count of control points order: spline order normalize: normalize values in range [0, 1] if ``True`` """ if normalize: max_value = float(count + order - 1) else: max_value = 1.0 return [knot_value / max_value for knot_value in range(count + order)] def open_uniform_knot_vector(count: int, order: int, normalize=False) -> list[float]: """Returns an open (clamped) uniform knot vector for a B-spline of `order` and `count` control points. `order` = degree + 1 Args: count: count of control points order: spline order normalize: normalize values in range [0, 1] if ``True`` """ k = count - order if normalize: max_value = float(count - order + 1) tail = [1.0] * order else: max_value = 1.0 tail = [1.0 + k] * order knots = [0.0] * order knots.extend((1.0 + v) / max_value for v in range(k)) knots.extend(tail) return knots def knots_from_parametrization( n: int, p: int, t: Iterable[float], method="average", constrained=False ) -> list[float]: """Returns a 'clamped' knot vector for B-splines. All knot values are normalized in the range [0, 1]. Args: n: count fit points - 1 p: degree of spline t: parametrization vector, length(t_vector) == n, normalized [0, 1] method: "average", "natural" constrained: ``True`` for B-spline constrained by end derivatives Returns: List of n+p+2 knot values as floats """ order = int(p + 1) if order > (n + 1): raise DXFValueError("Invalid n/p combination, more fit points required.") t = [float(v) for v in t] if t[0] != 0.0 or not math.isclose(t[-1], 1.0): raise ValueError("Parametrization vector t has to be normalized.") if method == "average": return ( averaged_knots_constrained(n, p, t) if constrained else averaged_knots_unconstrained(n, p, t) ) elif method == "natural": return ( natural_knots_constrained(n, p, t) if constrained else natural_knots_unconstrained(n, p, t) ) else: raise ValueError(f"Unknown knot generation method: {method}") def averaged_knots_unconstrained(n: int, p: int, t: Sequence[float]) -> list[float]: """Returns an averaged knot vector from parametrization vector `t` for an unconstrained B-spline. Args: n: count of control points - 1 p: degree t: parametrization vector, normalized [0, 1] """ assert t[0] == 0.0 assert math.isclose(t[-1], 1.0) knots = [0.0] * (p + 1) knots.extend(sum(t[j : j + p]) / p for j in range(1, n - p + 1)) if knots[-1] > 1.0: raise ValueError("Normalized [0, 1] values required") knots.extend([1.0] * (p + 1)) return knots def averaged_knots_constrained(n: int, p: int, t: Sequence[float]) -> list[float]: """Returns an averaged knot vector from parametrization vector `t` for a constrained B-spline. Args: n: count of control points - 1 p: degree t: parametrization vector, normalized [0, 1] """ assert t[0] == 0.0 assert math.isclose(t[-1], 1.0) knots = [0.0] * (p + 1) knots.extend(sum(t[j : j + p - 1]) / p for j in range(n - p)) knots.extend([1.0] * (p + 1)) return knots def natural_knots_unconstrained(n: int, p: int, t: Sequence[float]) -> list[float]: """Returns a 'natural' knot vector from parametrization vector `t` for an unconstrained B-spline. Args: n: count of control points - 1 p: degree t: parametrization vector, normalized [0, 1] """ assert t[0] == 0.0 assert math.isclose(t[-1], 1.0) knots = [0.0] * (p + 1) knots.extend(t[2 : n - p + 2]) knots.extend([1.0] * (p + 1)) return knots def natural_knots_constrained(n: int, p: int, t: Sequence[float]) -> list[float]: """Returns a 'natural' knot vector from parametrization vector `t` for a constrained B-spline. Args: n: count of control points - 1 p: degree t: parametrization vector, normalized [0, 1] """ assert t[0] == 0.0 assert math.isclose(t[-1], 1.0) knots = [0.0] * (p + 1) knots.extend(t[1 : n - p + 1]) knots.extend([1.0] * (p + 1)) return knots def double_knots(n: int, p: int, t: Sequence[float]) -> list[float]: """Returns a knot vector from parametrization vector `t` for B-spline constrained by first derivatives at all fit points. Args: n: count of fit points - 1 p: degree of spline t: parametrization vector, first value has to be 0.0 and last value has to be 1.0 """ assert t[0] == 0.0 assert math.isclose(t[-1], 1.0) u = [0.0] * (p + 1) prev_t = 0.0 u1 = [] for t1 in t[1:-1]: if p == 2: # add one knot between prev_t and t u1.append((prev_t + t1) / 2.0) u1.append(t1) else: if prev_t == 0.0: # first knot u1.append(t1 / 2) else: # add one knot at the 1st third and one knot # at the 2nd third between prev_t and t. u1.append((2 * prev_t + t1) / 3.0) u1.append((prev_t + 2 * t1) / 3.0) prev_t = t1 u.extend(u1[: n * 2 - p]) u.append((t[-2] + 1.0) / 2.0) # last knot u.extend([1.0] * (p + 1)) return u def _get_best_solver(matrix: list| linalg.Matrix, degree: int) -> linalg.Solver: """Returns best suited linear equation solver depending on matrix configuration and python interpreter. """ # v1.2: added NumpySolver # Acceleration of banded diagonal matrix solver is still a thing but only for # really big matrices N > 30 in pure Python and N > 20 for C-extension np_support # PyPy has no advantages when using the NumpySolver if not isinstance(matrix, linalg.Matrix): matrix =linalg.Matrix(matrix) if matrix.nrows < 20: # use default equation solver return linalg.NumpySolver(matrix.matrix) else: # Theory: band parameters m1, m2 are at maximum degree-1, for # B-spline interpolation and approximation: # m1 = m2 = degree-1 # But the speed gain is not that big and just to be sure: m1, m2 = linalg.detect_banded_matrix(matrix, check_all=False) A = linalg.compact_banded_matrix(matrix, m1, m2) return linalg.BandedMatrixLU(A, m1, m2) def unconstrained_global_bspline_interpolation( fit_points: Sequence[UVec], degree: int, t_vector: Sequence[float], knot_generation_method: str = "average", ) -> tuple[list[Vec3], list[float]]: """Interpolates the control points for a B-spline by global interpolation from fit points without any constraints. Source: Piegl & Tiller: "The NURBS Book" - chapter 9.2.1 Args: fit_points: points the B-spline has to pass degree: degree of spline >= 2 t_vector: parametrization vector, first value has to be 0 and last value has to be 1 knot_generation_method: knot generation method from parametrization vector, "average" or "natural" Returns: 2-tuple of control points as list of Vec3 objects and the knot vector as list of floats """ # Source: http://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/INT-APP/CURVE-INT-global.html knots = knots_from_parametrization( len(fit_points) - 1, degree, t_vector, knot_generation_method, constrained=False, ) N = Basis(knots=knots, order=degree + 1, count=len(fit_points)) solver = _get_best_solver([N.basis_vector(t) for t in t_vector], degree) mat_B = np.array(fit_points, dtype=np.float64) control_points = solver.solve_matrix(mat_B) return Vec3.list(control_points.rows()), knots def global_bspline_interpolation_end_tangents( fit_points: list[Vec3], start_tangent: Vec3, end_tangent: Vec3, degree: int, t_vector: Sequence[float], knot_generation_method: str = "average", ) -> tuple[list[Vec3], list[float]]: """Calculates the control points for a B-spline by global interpolation from fit points and the 1st derivative of the start- and end point as constraints. These 'tangents' are 1st derivatives and not unit vectors, if an estimation of the magnitudes is required use the :func:`estimate_end_tangent_magnitude` function. Source: Piegl & Tiller: "The NURBS Book" - chapter 9.2.2 Args: fit_points: points the B-spline has to pass start_tangent: 1st derivative as start constraint end_tangent: 1st derivative as end constrain degree: degree of spline >= 2 t_vector: parametrization vector, first value has to be 0 and last value has to be 1 knot_generation_method: knot generation method from parametrization vector, "average" or "natural" Returns: 2-tuple of control points as list of Vec3 objects and the knot vector as list of floats """ n = len(fit_points) - 1 p = degree if degree > 3: # todo: 'average' produces weird results for degree > 3, 'natural' is # better but also not good knot_generation_method = "natural" knots = knots_from_parametrization( n + 2, p, t_vector, knot_generation_method, constrained=True ) N = Basis(knots=knots, order=p + 1, count=n + 3) rows = [N.basis_vector(u) for u in t_vector] spacing = [0.0] * (n + 1) rows.insert(1, [-1.0, +1.0] + spacing) rows.insert(-1, spacing + [-1.0, +1.0]) fit_points.insert(1, start_tangent * (knots[p + 1] / p)) fit_points.insert(-1, end_tangent * ((1.0 - knots[-(p + 2)]) / p)) solver = _get_best_solver(rows, degree) control_points = solver.solve_matrix(fit_points) return Vec3.list(control_points.rows()), knots def cad_fit_point_interpolation( fit_points: list[Vec3], ) -> tuple[list[Vec3], list[float]]: """Calculates the control points for a B-spline by global interpolation from fit points without any constraints in the same way as AutoCAD and BricsCAD. Source: https://stackoverflow.com/a/74863330/6162864 Args: fit_points: points the B-spline has to pass Returns: 2-tuple of control points as list of Vec3 objects and the knot vector as list of floats """ def coefficients1() -> list[float]: """Returns the coefficients for equation [1].""" # Piegl & Tiller: "The NURBS Book" formula (3.9) up1 = knots[p + 1] up2 = knots[p + 2] f = p * (p - 1) / up1 return [ f / up1, # P0 -f * (up1 + up2) / (up1 * up2), # P1 f / up2, # P2 ] def coefficients2() -> list[float]: """Returns the coefficients for equation [n-1].""" # Piegl & Tiller: "The NURBS Book" formula (3.10) m = len(knots) - 1 ump1 = knots[m - p - 1] ump2 = knots[m - p - 2] f = p * (p - 1) / (1.0 - ump1) return [ f / (1.0 - ump2), # Pn-2 -f * (2.0 - ump1 - ump2) / (1.0 - ump1) / (1.0 - ump2), # Pn-1 f / (1.0 - ump1), # Pn ] t_vector = list(create_t_vector(fit_points, "chord")) n = len(fit_points) - 1 p = 3 knots = knots_from_parametrization( n + 2, p, t_vector, method="natural", constrained=True ) N = Basis(knots=knots, order=p + 1, count=n + 3) rows = [N.basis_vector(u) for u in t_vector] spacing = [0.0] * n rows.insert(1, coefficients1() + spacing) rows.insert(-1, spacing + coefficients2()) # C"(0) == 0 fit_points.insert(1, Vec3(0, 0, 0)) # C"(1) == 0 fit_points.insert(-1, Vec3(0, 0, 0)) solver = _get_best_solver(rows, p) control_points = solver.solve_matrix(fit_points) return Vec3.list(control_points.rows()), knots def global_bspline_interpolation_first_derivatives( fit_points: list[Vec3], derivatives: list[Vec3], degree: int, t_vector: Sequence[float], ) -> tuple[list[Vec3], list[float]]: """Interpolates the control points for a B-spline by a global interpolation from fit points and 1st derivatives as constraints. Source: Piegl & Tiller: "The NURBS Book" - chapter 9.2.4 Args: fit_points: points the B-spline has to pass derivatives: 1st derivatives as constrains, not unit vectors! Scaling by chord length is a reasonable choice (Piegl & Tiller). degree: degree of spline >= 2 t_vector: parametrization vector, first value has to be 0 and last value has to be 1 Returns: 2-tuple of control points as list of Vec3 objects and the knot vector as list of floats """ def nbasis(t: float): span = N.find_span(t) front = span - p back = count + p + 1 - span for basis in N.basis_funcs_derivatives(span, t, n=1): yield [0.0] * front + basis + [0.0] * back p = degree n = len(fit_points) - 1 knots = double_knots(n, p, t_vector) count = len(fit_points) * 2 N = Basis(knots=knots, order=p + 1, count=count) A = [ [1.0] + [0.0] * (count - 1), # Q0 [-1.0, +1.0] + [0.0] * (count - 2), # D0 ] ncols = len(A[0]) for f in (nbasis(t) for t in t_vector[1:-1]): A.extend([row[:ncols] for row in f]) # Qi, Di # swapped equations! A.append([0.0] * (count - 2) + [-1.0, +1.0]) # Dn A.append([0.0] * (count - 1) + [+1.0]) # Qn assert len(set(len(row) for row in A)) == 1, "inhomogeneous matrix detected" # Build right handed matrix B B: list[Vec3] = [] for rows in zip(fit_points, derivatives): B.extend(rows) # Qi, Di # also swap last rows! B[-1], B[-2] = B[-2], B[-1] # Dn, Qn # modify equation for derivatives D0 and Dn B[1] *= knots[p + 1] / p B[-2] *= (1.0 - knots[-(p + 2)]) / p solver = _get_best_solver(A, degree) control_points = solver.solve_matrix(B) return Vec3.list(control_points.rows()), knots def local_cubic_bspline_interpolation_from_tangents( fit_points: list[Vec3], tangents: list[Vec3] ) -> tuple[list[Vec3], list[float]]: """Interpolates the control points for a cubic B-spline by local interpolation from fit points and tangents as unit vectors for each fit point. Use the :func:`estimate_tangents` function to estimate end tangents. Source: Piegl & Tiller: "The NURBS Book" - chapter 9.3.4 Args: fit_points: curve definition points - curve has to pass all given fit points tangents: one tangent vector for each fit point as unit vectors Returns: 2-tuple of control points as list of Vec3 objects and the knot vector as list of floats """ assert len(fit_points) == len(tangents) assert len(fit_points) > 2 degree = 3 order = degree + 1 control_points = [fit_points[0]] u = 0.0 params = [] for i in range(len(fit_points) - 1): p0 = fit_points[i] p3 = fit_points[i + 1] t0 = tangents[i] t3 = tangents[i + 1] a = 16.0 - (t0 + t3).magnitude_square # always > 0! b = 12.0 * (p3 - p0).dot(t0 + t3) c = -36.0 * (p3 - p0).magnitude_square try: alpha_plus, alpha_minus = linalg.quadratic_equation(a, b, c) except ValueError: # complex solution continue p1 = p0 + alpha_plus * t0 / 3.0 p2 = p3 - alpha_plus * t3 / 3.0 control_points.extend((p1, p2)) u += 3.0 * (p1 - p0).magnitude params.append(u) control_points.append(fit_points[-1]) knots = [0.0] * order max_u = params[-1] for v in params[:-1]: knot = v / max_u knots.extend((knot, knot)) knots.extend([1.0] * 4) assert len(knots) == required_knot_values(len(control_points), order) return control_points, knots class BSpline: """B-spline construction tool. Internal representation of a `B-spline`_ curve. The default configuration of the knot vector is a uniform open `knot`_ vector ("clamped"). Factory functions: - :func:`fit_points_to_cad_cv` - :func:`fit_points_to_cubic_bezier` - :func:`open_uniform_bspline` - :func:`closed_uniform_bspline` - :func:`rational_bspline_from_arc` - :func:`rational_bspline_from_ellipse` - :func:`global_bspline_interpolation` - :func:`local_cubic_bspline_interpolation` Args: control_points: iterable of control points as :class:`Vec3` compatible objects order: spline order (degree + 1) knots: iterable of knot values weights: iterable of weight values """ __slots__ = ("_control_points", "_basis", "_clamped") def __init__( self, control_points: Iterable[UVec], order: int = 4, knots: Optional[Iterable[float]] = None, weights: Optional[Iterable[float]] = None, ): self._control_points = Vec3.tuple(control_points) count = len(self._control_points) order = int(order) if order > count: raise DXFValueError( f"got {count} control points, need {order} or more for order of {order}" ) if knots is None: knots = open_uniform_knot_vector(count, order, normalize=True) else: knots = tuple(knots) required_knot_count = count + order if len(knots) != required_knot_count: raise ValueError( f"{required_knot_count} knot values required, got {len(knots)}." ) if knots[0] != 0.0: knots = normalize_knots(knots) self._basis = Basis(knots, order, count, weights=weights) self._clamped = len(set(knots[:order])) == 1 and len(set(knots[-order:])) == 1 def __str__(self): return ( f"BSpline degree={self.degree}, {self.count} " f"control points, {len(self.knots())} knot values, " f"{len(self.weights())} weights" ) @property def control_points(self) -> Sequence[Vec3]: """Control points as tuple of :class:`~ezdxf.math.Vec3`""" return self._control_points @property def count(self) -> int: """Count of control points, (n + 1 in text book notation).""" return len(self._control_points) @property def max_t(self) -> float: """Biggest `knot`_ value.""" return self._basis.max_t @property def order(self) -> int: """Order (k) of B-spline = p + 1""" return self._basis.order @property def degree(self) -> int: """Degree (p) of B-spline = order - 1""" return self._basis.degree @property def evaluator(self) -> Evaluator: return Evaluator(self._basis, self._control_points) @property def is_rational(self): """Returns ``True`` if curve is a rational B-spline. (has weights)""" return self._basis.is_rational @property def is_clamped(self): """Returns ``True`` if curve is a clamped (open) B-spline.""" return self._clamped @staticmethod def from_fit_points(points: Iterable[UVec], degree=3, method="chord") -> BSpline: """Returns :class:`BSpline` defined by fit points.""" return global_bspline_interpolation(points, degree, method=method) @staticmethod def ellipse_approximation(ellipse: ConstructionEllipse, num: int = 16) -> BSpline: """Returns an ellipse approximation as :class:`BSpline` with `num` control points. """ return global_bspline_interpolation( ellipse.vertices(ellipse.params(num)), degree=2 ) @staticmethod def arc_approximation(arc: ConstructionArc, num: int = 16) -> BSpline: """Returns an arc approximation as :class:`BSpline` with `num` control points. """ return global_bspline_interpolation(arc.vertices(arc.angles(num)), degree=2) @staticmethod def from_ellipse(ellipse: ConstructionEllipse) -> BSpline: """Returns the ellipse as :class:`BSpline` of 2nd degree with as few control points as possible. """ return rational_bspline_from_ellipse(ellipse, segments=1) @staticmethod def from_arc(arc: ConstructionArc) -> BSpline: """Returns the arc as :class:`BSpline` of 2nd degree with as few control points as possible. """ return rational_bspline_from_arc( arc.center, arc.radius, arc.start_angle, arc.end_angle, segments=1 ) @staticmethod def from_nurbs_python_curve(curve) -> BSpline: """Interface to the `NURBS-Python `_ package. Returns a :class:`BSpline` object from a :class:`geomdl.BSpline.Curve` object. """ return BSpline( control_points=curve.ctrlpts, order=curve.order, knots=curve.knotvector, weights=curve.weights, ) def reverse(self) -> BSpline: """Returns a new :class:`BSpline` object with reversed control point order. """ def reverse_knots(): for k in reversed(normalize_knots(self.knots())): yield 1.0 - k return self.__class__( control_points=reversed(self.control_points), order=self.order, knots=reverse_knots(), weights=reversed(self.weights()) if self.is_rational else None, ) def knots(self) -> Sequence[float]: """Returns a tuple of `knot`_ values as floats, the knot vector **always** has order + count values (n + p + 2 in text book notation). """ return self._basis.knots def weights(self) -> Sequence[float]: """Returns a tuple of weights values as floats, one for each control point or an empty tuple. """ return self._basis.weights def approximate(self, segments: int = 20) -> Iterable[Vec3]: """Approximates curve by vertices as :class:`Vec3` objects, vertices count = segments + 1. """ return self.evaluator.points(self.params(segments)) def params(self, segments: int) -> Iterable[float]: """Yield evenly spaced parameters for given segment count.""" # works for clamped and unclamped curves knots = self.knots() lower_bound = knots[self.order - 1] upper_bound = knots[self.count] return np.linspace(lower_bound, upper_bound, segments + 1) def flattening(self, distance: float, segments: int = 4) -> Iterator[Vec3]: """Adaptive recursive flattening. The argument `segments` is the minimum count of approximation segments between two knots, if the distance from the center of the approximation segment to the curve is bigger than `distance` the segment will be subdivided. Args: distance: maximum distance from the projected curve point onto the segment chord. segments: minimum segment count between two knots """ def subdiv(s: Vec3, e: Vec3, start_t: float, end_t: float): mid_t = (start_t + end_t) * 0.5 m = evaluator.point(mid_t) try: _dist = distance_point_line_3d(m, s, e) except ZeroDivisionError: # s == e _dist = 0 if _dist < distance: yield e else: yield from subdiv(s, m, start_t, mid_t) yield from subdiv(m, e, mid_t, end_t) evaluator = self.evaluator knots: list[float] = self.knots() # type: ignore if self.is_clamped: lower_bound = 0.0 else: lower_bound = knots[self.order - 1] knots = knots[: self.count + 1] knots = list(set(knots)) knots.sort() t = lower_bound start_point = evaluator.point(t) yield start_point for t1 in knots[1:]: delta = (t1 - t) / segments while t < t1: next_t = t + delta if math.isclose(next_t, t1): next_t = t1 end_point = evaluator.point(next_t) yield from subdiv(start_point, end_point, t, next_t) t = next_t start_point = end_point def point(self, t: float) -> Vec3: """Returns point for parameter `t`. Args: t: parameter in range [0, max_t] """ return self.evaluator.point(t) def points(self, t: Iterable[float]) -> Iterable[Vec3]: """Yields points for parameter vector `t`. Args: t: parameters in range [0, max_t] """ return self.evaluator.points(t) def derivative(self, t: float, n: int = 2) -> list[Vec3]: """Return point and derivatives up to `n` <= degree for parameter `t`. e.g. n=1 returns point and 1st derivative. Args: t: parameter in range [0, max_t] n: compute all derivatives up to n <= degree Returns: n+1 values as :class:`Vec3` objects """ return self.evaluator.derivative(t, n) def derivatives(self, t: Iterable[float], n: int = 2) -> Iterable[list[Vec3]]: """Yields points and derivatives up to `n` <= degree for parameter vector `t`. e.g. n=1 returns point and 1st derivative. Args: t: parameters in range [0, max_t] n: compute all derivatives up to n <= degree Returns: List of n+1 values as :class:`Vec3` objects """ return self.evaluator.derivatives(t, n) def insert_knot(self, t: float) -> BSpline: """Insert an additional knot, without altering the shape of the curve. Returns a new :class:`BSpline` object. Args: t: position of new knot 0 < t < max_t """ if self._basis.is_rational: raise TypeError("Rational B-splines not supported.") knots = list(self._basis.knots) cpoints = list(self._control_points) p = self.degree def new_point(index: int) -> Vec3: a = (t - knots[index]) / (knots[index + p] - knots[index]) return cpoints[index - 1] * (1 - a) + cpoints[index] * a if t <= 0.0 or t >= self.max_t: raise DXFValueError("Invalid position t") k = self._basis.find_span(t) if k < p: raise DXFValueError("Invalid position t") cpoints[k - p + 1 : k] = [new_point(i) for i in range(k - p + 1, k + 1)] knots.insert(k + 1, t) # knot[k] <= t < knot[k+1] return BSpline(cpoints, self.order, knots) def knot_refinement(self, u: Iterable[float]) -> BSpline: """Insert multiple knots, without altering the shape of the curve. Returns a new :class:`BSpline` object. Args: u: vector of new knots t and for each t: 0 < t < max_t """ spline = self for t in u: spline = spline.insert_knot(t) return spline def transform(self, m: Matrix44) -> BSpline: """Returns a new :class:`BSpline` object transformed by a :class:`Matrix44` transformation matrix. """ cpoints = m.transform_vertices(self.control_points) return BSpline(cpoints, self.order, self.knots(), self.weights()) def bezier_decomposition(self) -> Iterable[list[Vec3]]: """Decompose a non-rational B-spline into multiple Bézier curves. This is the preferred method to represent the most common non-rational B-splines of 3rd degree by cubic Bézier curves, which are often supported by render backends. Returns: Yields control points of Bézier curves, each Bézier segment has degree+1 control points e.g. B-spline of 3rd degree yields cubic Bézier curves of 4 control points. """ # Source: "The NURBS Book": Algorithm A5.6 if self._basis.is_rational: raise TypeError("Rational B-splines not supported.") if not self.is_clamped: raise TypeError("Clamped B-Spline required.") n = self.count - 1 p = self.degree knots = self._basis.knots # U control_points = self._control_points # Pw alphas = [0.0] * len(knots) m = n + p + 1 a = p b = p + 1 bezier_points = list(control_points[0 : p + 1]) # Qw while b < m: next_bezier_points = [NULLVEC] * (p + 1) i = b while b < m and math.isclose(knots[b + 1], knots[b]): b += 1 mult = b - i + 1 if mult < p: numer = knots[b] - knots[a] for j in range(p, mult, -1): alphas[j - mult - 1] = numer / (knots[a + j] - knots[a]) r = p - mult for j in range(1, r + 1): save = r - j s = mult + j for k in range(p, s - 1, -1): alpha = alphas[k - s] bezier_points[k] = bezier_points[k] * alpha + bezier_points[ k - 1 ] * (1.0 - alpha) if b < m: next_bezier_points[save] = bezier_points[p] yield bezier_points if b < m: for i in range(p - mult, p + 1): next_bezier_points[i] = control_points[b - p + i] a = b b += 1 bezier_points = next_bezier_points def cubic_bezier_approximation( self, level: int = 3, segments: Optional[int] = None ) -> Iterable[Bezier4P]: """Approximate arbitrary B-splines (degree != 3 and/or rational) by multiple segments of cubic Bézier curves. The choice of cubic Bézier curves is based on the widely support of this curves by many render backends. For cubic non-rational B-splines, which is maybe the most common used B-spline, is :meth:`bezier_decomposition` the better choice. 1. approximation by `level`: an educated guess, the first level of approximation segments is based on the count of control points and their distribution along the B-spline, every additional level is a subdivision of the previous level. E.g. a B-Spline of 8 control points has 7 segments at the first level, 14 at the 2nd level and 28 at the 3rd level, a level >= 3 is recommended. 2. approximation by a given count of evenly distributed approximation segments. Args: level: subdivision level of approximation segments (ignored if argument `segments` is not ``None``) segments: absolute count of approximation segments Returns: Yields control points of cubic Bézier curves as :class:`Bezier4P` objects """ if segments is None: points = list(self.points(self.approximation_params(level))) else: points = list(self.approximate(segments)) from .bezier_interpolation import cubic_bezier_interpolation return cubic_bezier_interpolation(points) def approximation_params(self, level: int = 3) -> Sequence[float]: """Returns an educated guess, the first level of approximation segments is based on the count of control points and their distribution along the B-spline, every additional level is a subdivision of the previous level. E.g. a B-Spline of 8 control points has 7 segments at the first level, 14 at the 2nd level and 28 at the 3rd level. """ params = list(create_t_vector(self._control_points, "chord")) if len(params) == 0: return params if self.max_t != 1.0: max_t = self.max_t params = [p * max_t for p in params] for _ in range(level - 1): params = list(subdivide_params(params)) return params def subdivide_params(p: list[float]) -> Iterable[float]: for i in range(len(p) - 1): yield p[i] yield (p[i] + p[i + 1]) / 2.0 yield p[-1] def open_uniform_bspline( control_points: Iterable[UVec], order: int = 4, weights: Optional[Iterable[float]] = None, ) -> BSpline: """Creates an open uniform (periodic) `B-spline`_ curve (`open curve`_). This is an unclamped curve, which means the curve passes none of the control points. Args: control_points: iterable of control points as :class:`Vec3` compatible objects order: spline order (degree + 1) weights: iterable of weight values """ _control_points = Vec3.tuple(control_points) knots = uniform_knot_vector(len(_control_points), order, normalize=False) return BSpline(control_points, order=order, knots=knots, weights=weights) def closed_uniform_bspline( control_points: Iterable[UVec], order: int = 4, weights: Optional[Iterable[float]] = None, ) -> BSpline: """Creates a closed uniform (periodic) `B-spline`_ curve (`open curve`_). This B-spline does not pass any of the control points. Args: control_points: iterable of control points as :class:`Vec3` compatible objects order: spline order (degree + 1) weights: iterable of weight values """ _control_points = Vec3.list(control_points) _control_points.extend(_control_points[: order - 1]) if weights is not None: weights = list(weights) weights.extend(weights[: order - 1]) return open_uniform_bspline(_control_points, order, weights) def rational_bspline_from_arc( center: Vec3 = (0, 0), radius: float = 1, start_angle: float = 0, end_angle: float = 360, segments: int = 1, ) -> BSpline: """Returns a rational B-splines for a circular 2D arc. Args: center: circle center as :class:`Vec3` compatible object radius: circle radius start_angle: start angle in degrees end_angle: end angle in degrees segments: count of spline segments, at least one segment for each quarter (90 deg), default is 1, for as few as needed. """ center = Vec3(center) radius = float(radius) start_rad = math.radians(start_angle % 360) end_rad = start_rad + math.radians(arc_angle_span_deg(start_angle, end_angle)) control_points, weights, knots = nurbs_arc_parameters(start_rad, end_rad, segments) return BSpline( control_points=(center + (p * radius) for p in control_points), weights=weights, knots=knots, order=3, ) PI_2 = math.pi / 2.0 def rational_bspline_from_ellipse( ellipse: ConstructionEllipse, segments: int = 1 ) -> BSpline: """Returns a rational B-splines for an elliptic arc. Args: ellipse: ellipse parameters as :class:`~ezdxf.math.ConstructionEllipse` object segments: count of spline segments, at least one segment for each quarter (π/2), default is 1, for as few as needed. """ start_angle = ellipse.start_param % math.tau end_angle = start_angle + ellipse.param_span def transform_control_points() -> Iterable[Vec3]: center = Vec3(ellipse.center) x_axis = ellipse.major_axis y_axis = ellipse.minor_axis for p in control_points: yield center + x_axis * p.x + y_axis * p.y control_points, weights, knots = nurbs_arc_parameters( start_angle, end_angle, segments ) return BSpline( control_points=transform_control_points(), weights=weights, knots=knots, order=3, ) def nurbs_arc_parameters(start_angle: float, end_angle: float, segments: int = 1): """Returns a rational B-spline parameters for a circular 2D arc with center at (0, 0) and a radius of 1. Args: start_angle: start angle in radians end_angle: end angle in radians segments: count of segments, at least one segment for each quarter (π/2) Returns: control_points, weights, knots """ # Source: https://www.researchgate.net/publication/283497458_ONE_METHOD_FOR_REPRESENTING_AN_ARC_OF_ELLIPSE_BY_A_NURBS_CURVE/citation/download if segments < 1: raise ValueError("Invalid argument segments (>= 1).") delta_angle = end_angle - start_angle arc_count = max(math.ceil(delta_angle / PI_2), segments) segment_angle = delta_angle / arc_count segment_angle_2 = segment_angle / 2 arc_weight = math.cos(segment_angle_2) # First control point control_points = [Vec3(math.cos(start_angle), math.sin(start_angle))] weights = [1.0] angle = start_angle d = 1.0 / math.cos(segment_angle / 2.0) for _ in range(arc_count): # next control point between points on arc angle += segment_angle_2 control_points.append(Vec3(math.cos(angle) * d, math.sin(angle) * d)) weights.append(arc_weight) # next control point on arc angle += segment_angle_2 control_points.append(Vec3(math.cos(angle), math.sin(angle))) weights.append(1.0) # Knot vector calculation for B-spline of order=3 # Clamped B-Spline starts with `order` 0.0 knots and # ends with `order` 1.0 knots knots = [0.0, 0.0, 0.0] step = 1.0 / ((max(len(control_points) + 1, 4) - 4) / 2.0 + 1.0) g = step while g < 1.0: knots.extend((g, g)) g += step knots.extend([1.0] * (required_knot_values(len(control_points), 3) - len(knots))) return control_points, weights, knots def bspline_basis(u: float, index: int, degree: int, knots: Sequence[float]) -> float: """B-spline basis_vector function. Simple recursive implementation for testing and comparison. Args: u: curve parameter in range [0, max(knots)] index: index of control point degree: degree of B-spline knots: knots vector Returns: float: basis_vector value N_i,p(u) """ cache: dict[tuple[int, int], float] = {} u = float(u) def N(i: int, p: int) -> float: try: return cache[(i, p)] except KeyError: if p == 0: retval = 1 if knots[i] <= u < knots[i + 1] else 0.0 else: dominator = knots[i + p] - knots[i] f1 = (u - knots[i]) / dominator * N(i, p - 1) if dominator else 0.0 dominator = knots[i + p + 1] - knots[i + 1] f2 = ( (knots[i + p + 1] - u) / dominator * N(i + 1, p - 1) if dominator else 0.0 ) retval = f1 + f2 cache[(i, p)] = retval return retval return N(int(index), int(degree)) def bspline_basis_vector( u: float, count: int, degree: int, knots: Sequence[float] ) -> list[float]: """Create basis_vector vector at parameter u. Used with the bspline_basis() for testing and comparison. Args: u: curve parameter in range [0, max(knots)] count: control point count (n + 1) degree: degree of B-spline (order = degree + 1) knots: knot vector Returns: list[float]: basis_vector vector, len(basis_vector) == count """ assert len(knots) == (count + degree + 1) basis: list[float] = [ bspline_basis(u, index, degree, knots) for index in range(count) ] # pick up last point ??? why is this necessary ??? if math.isclose(u, knots[-1]): basis[-1] = 1.0 return basis