363 lines
12 KiB
Python
363 lines
12 KiB
Python
# Copyright (c) 2011-2024, Manfred Moitzi
|
|
# License: MIT License
|
|
# These are the pure Python implementations of the Cython accelerated
|
|
# construction tools: ezdxf/acc/construct.pyx
|
|
from __future__ import annotations
|
|
from typing import Iterable, Sequence, Optional, TYPE_CHECKING
|
|
import math
|
|
|
|
# The pure Python implementation can't import from ._ctypes or ezdxf.math!
|
|
from ._vector import Vec2, Vec3
|
|
|
|
if TYPE_CHECKING:
|
|
from ezdxf.math import UVec
|
|
|
|
TOLERANCE = 1e-10
|
|
RAD_ABS_TOL = 1e-15
|
|
DEG_ABS_TOL = 1e-13
|
|
|
|
|
|
def has_clockwise_orientation(vertices: Iterable[UVec]) -> bool:
|
|
"""Returns ``True`` if the given 2D `vertices` have clockwise orientation.
|
|
Ignores the z-axis of all vertices.
|
|
|
|
Args:
|
|
vertices: iterable of :class:`Vec2` compatible objects
|
|
|
|
Raises:
|
|
ValueError: less than 3 vertices
|
|
|
|
"""
|
|
vertices = Vec2.list(vertices)
|
|
if len(vertices) < 3:
|
|
raise ValueError("At least 3 vertices required.")
|
|
|
|
# close polygon:
|
|
if not vertices[0].isclose(vertices[-1]):
|
|
vertices.append(vertices[0])
|
|
|
|
return (
|
|
sum(
|
|
(p2.x - p1.x) * (p2.y + p1.y)
|
|
for p1, p2 in zip(vertices, vertices[1:])
|
|
)
|
|
> 0.0
|
|
)
|
|
|
|
|
|
def intersection_line_line_2d(
|
|
line1: Sequence[Vec2],
|
|
line2: Sequence[Vec2],
|
|
virtual=True,
|
|
abs_tol=TOLERANCE,
|
|
) -> Optional[Vec2]:
|
|
"""
|
|
Compute the intersection of two lines in the xy-plane.
|
|
|
|
Args:
|
|
line1: start- and end point of first line to test
|
|
e.g. ((x1, y1), (x2, y2)).
|
|
line2: start- and end point of second line to test
|
|
e.g. ((x3, y3), (x4, y4)).
|
|
virtual: ``True`` returns any intersection point, ``False`` returns
|
|
only real intersection points.
|
|
abs_tol: tolerance for intersection test.
|
|
|
|
Returns:
|
|
``None`` if there is no intersection point (parallel lines) or
|
|
intersection point as :class:`Vec2`
|
|
|
|
"""
|
|
# Algorithm based on: http://paulbourke.net/geometry/pointlineplane/
|
|
# chapter: Intersection point of two line segments in 2 dimensions
|
|
s1, s2 = line1 # the subject line
|
|
c1, c2 = line2 # the clipping line
|
|
s1x = s1.x
|
|
s1y = s1.y
|
|
s2x = s2.x
|
|
s2y = s2.y
|
|
c1x = c1.x
|
|
c1y = c1.y
|
|
c2x = c2.x
|
|
c2y = c2.y
|
|
|
|
den = (c2y - c1y) * (s2x - s1x) - (c2x - c1x) * (s2y - s1y)
|
|
if math.fabs(den) <= abs_tol:
|
|
return None
|
|
|
|
us = ((c2x - c1x) * (s1y - c1y) - (c2y - c1y) * (s1x - c1x)) / den
|
|
intersection_point = Vec2(s1x + us * (s2x - s1x), s1y + us * (s2y - s1y))
|
|
if virtual:
|
|
return intersection_point
|
|
|
|
# 0 = intersection point is the start point of the line
|
|
# 1 = intersection point is the end point of the line
|
|
# otherwise: linear interpolation
|
|
lwr = 0.0 # tolerances required?
|
|
upr = 1.0 # tolerances required?
|
|
if lwr <= us <= upr: # intersection point is on the subject line
|
|
uc = ((s2x - s1x) * (s1y - c1y) - (s2y - s1y) * (s1x - c1x)) / den
|
|
if lwr <= uc <= upr: # intersection point is on the clipping line
|
|
return intersection_point
|
|
return None
|
|
|
|
|
|
def _determinant(v1, v2, v3) -> float:
|
|
"""Returns determinant."""
|
|
e11, e12, e13 = v1
|
|
e21, e22, e23 = v2
|
|
e31, e32, e33 = v3
|
|
|
|
return (
|
|
e11 * e22 * e33
|
|
+ e12 * e23 * e31
|
|
+ e13 * e21 * e32
|
|
- e13 * e22 * e31
|
|
- e11 * e23 * e32
|
|
- e12 * e21 * e33
|
|
)
|
|
|
|
|
|
def intersection_ray_ray_3d(
|
|
ray1: Sequence[Vec3], ray2: Sequence[Vec3], abs_tol=TOLERANCE
|
|
) -> Sequence[Vec3]:
|
|
"""
|
|
Calculate intersection of two 3D rays, returns a 0-tuple for parallel rays,
|
|
a 1-tuple for intersecting rays and a 2-tuple for not intersecting and not
|
|
parallel rays with points of the closest approach on each ray.
|
|
|
|
Args:
|
|
ray1: first ray as tuple of two points as :class:`Vec3` objects
|
|
ray2: second ray as tuple of two points as :class:`Vec3` objects
|
|
abs_tol: absolute tolerance for comparisons
|
|
|
|
"""
|
|
# source: http://www.realtimerendering.com/intersections.html#I304
|
|
o1, p1 = ray1
|
|
d1 = (p1 - o1).normalize()
|
|
o2, p2 = ray2
|
|
d2 = (p2 - o2).normalize()
|
|
d1xd2 = d1.cross(d2)
|
|
denominator = d1xd2.magnitude_square
|
|
if denominator <= abs_tol:
|
|
# ray1 is parallel to ray2
|
|
return tuple()
|
|
else:
|
|
o2_o1 = o2 - o1
|
|
det1 = _determinant(o2_o1, d2, d1xd2)
|
|
det2 = _determinant(o2_o1, d1, d1xd2)
|
|
p1 = o1 + d1 * (det1 / denominator)
|
|
p2 = o2 + d2 * (det2 / denominator)
|
|
if p1.isclose(p2, abs_tol=abs_tol):
|
|
# ray1 and ray2 have an intersection point
|
|
return (p1,)
|
|
else:
|
|
# ray1 and ray2 do not have an intersection point,
|
|
# p1 and p2 are the points of closest approach on each ray
|
|
return p1, p2
|
|
|
|
|
|
def arc_angle_span_deg(start: float, end: float) -> float:
|
|
"""Returns the counter-clockwise angle span from `start` to `end` in degrees.
|
|
|
|
Returns the angle span in the range of [0, 360], 360 is a full circle.
|
|
Full circle handling is a special case, because normalization of angles
|
|
which describe a full circle would return 0 if treated as regular angles.
|
|
e.g. (0, 360) → 360, (0, -360) → 360, (180, -180) → 360.
|
|
Input angles with the same value always return 0 by definition: (0, 0) → 0,
|
|
(-180, -180) → 0, (360, 360) → 0.
|
|
|
|
"""
|
|
# Input values are equal, returns 0 by definition:
|
|
if math.isclose(start, end, abs_tol=DEG_ABS_TOL):
|
|
return 0.0
|
|
|
|
# Normalized start- and end angles are equal, but input values are
|
|
# different, returns 360 by definition:
|
|
start %= 360.0
|
|
if math.isclose(start, end % 360.0, abs_tol=DEG_ABS_TOL):
|
|
return 360.0
|
|
|
|
# Special treatment for end angle == 360 deg:
|
|
if not math.isclose(end, 360.0, abs_tol=DEG_ABS_TOL):
|
|
end %= 360.0
|
|
|
|
if end < start:
|
|
end += 360.0
|
|
return end - start
|
|
|
|
|
|
def arc_angle_span_rad(start: float, end: float) -> float:
|
|
"""Returns the counter-clockwise angle span from `start` to `end` in radians.
|
|
|
|
Returns the angle span in the range of [0, 2π], 2π is a full circle.
|
|
Full circle handling is a special case, because normalization of angles
|
|
which describe a full circle would return 0 if treated as regular angles.
|
|
e.g. (0, 2π) → 2π, (0, -2π) → 2π, (π, -π) → 2π.
|
|
Input angles with the same value always return 0 by definition: (0, 0) → 0,
|
|
(-π, -π) → 0, (2π, 2π) → 0.
|
|
|
|
"""
|
|
tau = math.tau
|
|
# Input values are equal, returns 0 by definition:
|
|
if math.isclose(start, end, abs_tol=RAD_ABS_TOL):
|
|
return 0.0
|
|
|
|
# Normalized start- and end angles are equal, but input values are
|
|
# different, returns 360 by definition:
|
|
start %= tau
|
|
if math.isclose(start, end % tau, abs_tol=RAD_ABS_TOL):
|
|
return tau
|
|
|
|
# Special treatment for end angle == 2π:
|
|
if not math.isclose(end, tau, abs_tol=RAD_ABS_TOL):
|
|
end %= tau
|
|
|
|
if end < start:
|
|
end += tau
|
|
return end - start
|
|
|
|
|
|
def is_point_in_polygon_2d(
|
|
point: Vec2, polygon: list[Vec2], abs_tol=TOLERANCE
|
|
) -> int:
|
|
"""
|
|
Test if `point` is inside `polygon`. Returns +1 for inside, 0 for on the
|
|
boundary and -1 for outside.
|
|
|
|
Supports convex and concave polygons with clockwise or counter-clockwise oriented
|
|
polygon vertices. Does not raise an exception for degenerated polygons.
|
|
|
|
|
|
Args:
|
|
point: 2D point to test as :class:`Vec2`
|
|
polygon: list of 2D points as :class:`Vec2`
|
|
abs_tol: tolerance for distance check
|
|
|
|
Returns:
|
|
+1 for inside, 0 for on the boundary, -1 for outside
|
|
|
|
"""
|
|
# Source: http://www.faqs.org/faqs/graphics/algorithms-faq/
|
|
# Subject 2.03: How do I find if a point lies within a polygon?
|
|
# polygon: the Cython implementation needs a list as input to be fast!
|
|
assert isinstance(polygon, list)
|
|
if len(polygon) < 3: # empty polygon
|
|
return -1
|
|
|
|
if polygon[0].isclose(polygon[-1]): # open polygon is required
|
|
polygon = polygon[:-1]
|
|
if len(polygon) < 3:
|
|
return -1
|
|
x = point.x
|
|
y = point.y
|
|
inside = False
|
|
x1, y1 = polygon[-1]
|
|
for x2, y2 in polygon:
|
|
# is point on polygon boundary line:
|
|
# is point in x-range of line
|
|
a, b = (x2, x1) if x2 < x1 else (x1, x2)
|
|
if a <= x <= b:
|
|
# is point in y-range of line
|
|
c, d = (y2, y1) if y2 < y1 else (y1, y2)
|
|
if (c <= y <= d) and abs(
|
|
(y2 - y1) * x - (x2 - x1) * y + (x2 * y1 - y2 * x1)
|
|
) <= abs_tol:
|
|
return 0 # on boundary line
|
|
if ((y1 <= y < y2) or (y2 <= y < y1)) and (
|
|
x < (x2 - x1) * (y - y1) / (y2 - y1) + x1
|
|
):
|
|
inside = not inside
|
|
x1 = x2
|
|
y1 = y2
|
|
if inside:
|
|
return 1 # inside polygon
|
|
else:
|
|
return -1 # outside polygon
|
|
|
|
|
|
# Values stored in GeoData RSS tag are not precise enough to match
|
|
# control calculation at epsg.io:
|
|
# Semi Major Axis: 6.37814e+06
|
|
# Semi Minor Axis: 6.35675e+06
|
|
WGS84_SEMI_MAJOR_AXIS = 6378137
|
|
WGS84_SEMI_MINOR_AXIS = 6356752.3142
|
|
WGS84_ELLIPSOID_ECCENTRIC = 0.08181919092890624
|
|
# WGS84_ELLIPSOID_ECCENTRIC = math.sqrt(
|
|
# 1.0 - WGS84_SEMI_MINOR_AXIS**2 / WGS84_SEMI_MAJOR_AXIS**2
|
|
# )
|
|
CONST_E2 = 1.3591409142295225 # math.e / 2.0
|
|
CONST_PI_2 = 1.5707963267948966 # math.pi / 2.0
|
|
CONST_PI_4 = 0.7853981633974483 # math.pi / 4.0
|
|
|
|
|
|
def gps_to_world_mercator(longitude: float, latitude: float) -> tuple[float, float]:
|
|
"""Transform GPS (long/lat) to World Mercator.
|
|
|
|
Transform WGS84 `EPSG:4326 <https://epsg.io/4326>`_ location given as
|
|
latitude and longitude in decimal degrees as used by GPS into World Mercator
|
|
cartesian 2D coordinates in meters `EPSG:3395 <https://epsg.io/3395>`_.
|
|
|
|
Args:
|
|
longitude: represents the longitude value (East-West) in decimal degrees
|
|
latitude: represents the latitude value (North-South) in decimal degrees.
|
|
|
|
.. versionadded:: 1.3.0
|
|
|
|
"""
|
|
# From: https://epsg.io/4326
|
|
# EPSG:4326 WGS84 - World Geodetic System 1984, used in GPS
|
|
# To: https://epsg.io/3395
|
|
# EPSG:3395 - World Mercator
|
|
# Source: https://gis.stackexchange.com/questions/259121/transformation-functions-for-epsg3395-projection-vs-epsg3857
|
|
longitude = math.radians(longitude) # east
|
|
latitude = math.radians(latitude) # north
|
|
a = WGS84_SEMI_MAJOR_AXIS
|
|
e = WGS84_ELLIPSOID_ECCENTRIC
|
|
e_sin_lat = math.sin(latitude) * e
|
|
c = math.pow((1.0 - e_sin_lat) / (1.0 + e_sin_lat), e / 2.0) # 7-7 p.44
|
|
y = a * math.log(math.tan(CONST_PI_4 + latitude / 2.0) * c) # 7-7 p.44
|
|
x = a * longitude
|
|
return x, y
|
|
|
|
|
|
def world_mercator_to_gps(x: float, y: float, tol: float = 1e-6) -> tuple[float, float]:
|
|
"""Transform World Mercator to GPS.
|
|
|
|
Transform WGS84 World Mercator `EPSG:3395 <https://epsg.io/3395>`_
|
|
location given as cartesian 2D coordinates x, y in meters into WGS84 decimal
|
|
degrees as longitude and latitude `EPSG:4326 <https://epsg.io/4326>`_ as
|
|
used by GPS.
|
|
|
|
Args:
|
|
x: coordinate WGS84 World Mercator
|
|
y: coordinate WGS84 World Mercator
|
|
tol: accuracy for latitude calculation
|
|
|
|
.. versionadded:: 1.3.0
|
|
|
|
"""
|
|
# From: https://epsg.io/3395
|
|
# EPSG:3395 - World Mercator
|
|
# To: https://epsg.io/4326
|
|
# EPSG:4326 WGS84 - World Geodetic System 1984, used in GPS
|
|
# Source: Map Projections - A Working Manual
|
|
# https://pubs.usgs.gov/pp/1395/report.pdf
|
|
a = WGS84_SEMI_MAJOR_AXIS
|
|
e = WGS84_ELLIPSOID_ECCENTRIC
|
|
e2 = e / 2.0
|
|
pi2 = CONST_PI_2
|
|
t = math.e ** (-y / a) # 7-10 p.44
|
|
latitude_ = pi2 - 2.0 * math.atan(t) # 7-11 p.45
|
|
while True:
|
|
e_sin_lat = math.sin(latitude_) * e
|
|
latitude = pi2 - 2.0 * math.atan(
|
|
t * ((1.0 - e_sin_lat) / (1.0 + e_sin_lat)) ** e2
|
|
) # 7-9 p.44
|
|
if abs(latitude - latitude_) < tol:
|
|
break
|
|
latitude_ = latitude
|
|
|
|
longitude = x / a # 7-12 p.45
|
|
return math.degrees(longitude), math.degrees(latitude)
|