770 lines
25 KiB
Python
770 lines
25 KiB
Python
# Copyright (c) 2020-2024, Manfred Moitzi
|
|
# License: MIT License
|
|
from __future__ import annotations
|
|
from typing import Sequence, Iterable, Optional, Iterator
|
|
from enum import IntEnum
|
|
import math
|
|
from ezdxf.math import (
|
|
Vec3,
|
|
Vec2,
|
|
Matrix44,
|
|
X_AXIS,
|
|
Y_AXIS,
|
|
Z_AXIS,
|
|
AnyVec,
|
|
UVec,
|
|
)
|
|
|
|
|
|
__all__ = [
|
|
"is_planar_face",
|
|
"subdivide_face",
|
|
"subdivide_ngons",
|
|
"Plane",
|
|
"PlaneLocationState",
|
|
"normal_vector_3p",
|
|
"safe_normal_vector",
|
|
"distance_point_line_3d",
|
|
"intersection_line_line_3d",
|
|
"intersection_ray_polygon_3d",
|
|
"intersection_line_polygon_3d",
|
|
"basic_transformation",
|
|
"best_fit_normal",
|
|
"BarycentricCoordinates",
|
|
"linear_vertex_spacing",
|
|
"has_matrix_3d_stretching",
|
|
"spherical_envelope",
|
|
"inscribe_circle_tangent_length",
|
|
"bending_angle",
|
|
"split_polygon_by_plane",
|
|
"is_face_normal_pointing_outwards",
|
|
]
|
|
PI2 = math.pi / 2.0
|
|
|
|
|
|
def is_planar_face(face: Sequence[Vec3], abs_tol=1e-9) -> bool:
|
|
"""Returns ``True`` if sequence of vectors is a planar face.
|
|
|
|
Args:
|
|
face: sequence of :class:`~ezdxf.math.Vec3` objects
|
|
abs_tol: tolerance for normals check
|
|
|
|
"""
|
|
if len(face) < 3:
|
|
return False
|
|
if len(face) == 3:
|
|
return True
|
|
first_normal = None
|
|
for index in range(len(face) - 2):
|
|
a, b, c = face[index : index + 3]
|
|
try:
|
|
normal = (b - a).cross(c - b).normalize()
|
|
except ZeroDivisionError: # colinear edge
|
|
continue
|
|
if first_normal is None:
|
|
first_normal = normal
|
|
elif not first_normal.isclose(normal, abs_tol=abs_tol):
|
|
return False
|
|
if first_normal is not None:
|
|
return True
|
|
return False
|
|
|
|
|
|
def subdivide_face(
|
|
face: Sequence[Vec3], quads: bool = True
|
|
) -> Iterator[Sequence[Vec3]]:
|
|
"""Subdivides faces by subdividing edges and adding a center vertex.
|
|
|
|
Args:
|
|
face: a sequence of :class:`Vec3`
|
|
quads: create quad faces if ``True`` else create triangles
|
|
|
|
"""
|
|
if len(face) < 3:
|
|
raise ValueError("3 or more vertices required.")
|
|
|
|
len_face: int = len(face)
|
|
mid_pos = Vec3.sum(face) / len_face
|
|
subdiv_location: list[Vec3] = [
|
|
face[i].lerp(face[(i + 1) % len_face]) for i in range(len_face)
|
|
]
|
|
|
|
for index, vertex in enumerate(face):
|
|
if quads:
|
|
yield vertex, subdiv_location[index], mid_pos, subdiv_location[
|
|
index - 1
|
|
]
|
|
else:
|
|
yield subdiv_location[index - 1], vertex, mid_pos
|
|
yield vertex, subdiv_location[index], mid_pos
|
|
|
|
|
|
def subdivide_ngons(
|
|
faces: Iterable[Sequence[Vec3]],
|
|
max_vertex_count=4,
|
|
) -> Iterator[Sequence[Vec3]]:
|
|
"""Subdivides faces into triangles by adding a center vertex.
|
|
|
|
Args:
|
|
faces: iterable of faces as sequence of :class:`Vec3`
|
|
max_vertex_count: subdivide only ngons with more vertices
|
|
|
|
"""
|
|
for face in faces:
|
|
if len(face) <= max_vertex_count:
|
|
yield Vec3.tuple(face)
|
|
else:
|
|
mid_pos = Vec3.sum(face) / len(face)
|
|
for index, vertex in enumerate(face):
|
|
yield face[index - 1], vertex, mid_pos
|
|
|
|
|
|
def normal_vector_3p(a: Vec3, b: Vec3, c: Vec3) -> Vec3:
|
|
"""Returns normal vector for 3 points, which is the normalized cross
|
|
product for: :code:`a->b x a->c`.
|
|
"""
|
|
return (b - a).cross(c - a).normalize()
|
|
|
|
|
|
def safe_normal_vector(vertices: Sequence[Vec3]) -> Vec3:
|
|
"""Safe function to detect the normal vector for a face or polygon defined
|
|
by 3 or more `vertices`.
|
|
|
|
"""
|
|
if len(vertices) < 3:
|
|
raise ValueError("3 or more vertices required")
|
|
a, b, c, *_ = vertices
|
|
try: # fast path
|
|
return (b - a).cross(c - a).normalize()
|
|
except ZeroDivisionError: # safe path, can still raise ZeroDivisionError
|
|
return best_fit_normal(vertices)
|
|
|
|
|
|
def best_fit_normal(vertices: Iterable[UVec]) -> Vec3:
|
|
"""Returns the "best fit" normal for a plane defined by three or more
|
|
vertices. This function tolerates imperfect plane vertices. Safe function
|
|
to detect the extrusion vector of flat arbitrary polygons.
|
|
|
|
"""
|
|
# Source: https://gamemath.com/book/geomprims.html#plane_best_fit (9.5.3)
|
|
_vertices = Vec3.list(vertices)
|
|
if len(_vertices) < 3:
|
|
raise ValueError("3 or more vertices required")
|
|
first = _vertices[0]
|
|
if not first.isclose(_vertices[-1]):
|
|
_vertices.append(first) # close polygon
|
|
prev_x, prev_y, prev_z = first.xyz
|
|
nx = 0.0
|
|
ny = 0.0
|
|
nz = 0.0
|
|
for v in _vertices[1:]:
|
|
x, y, z = v.xyz
|
|
nx += (prev_z + z) * (prev_y - y)
|
|
ny += (prev_x + x) * (prev_z - z)
|
|
nz += (prev_y + y) * (prev_x - x)
|
|
prev_x = x
|
|
prev_y = y
|
|
prev_z = z
|
|
return Vec3(nx, ny, nz).normalize()
|
|
|
|
|
|
def distance_point_line_3d(point: Vec3, start: Vec3, end: Vec3) -> float:
|
|
"""Returns the normal distance from a `point` to a 3D line.
|
|
|
|
Args:
|
|
point: point to test
|
|
start: start point of the 3D line
|
|
end: end point of the 3D line
|
|
|
|
"""
|
|
if start.isclose(end):
|
|
raise ZeroDivisionError("Not a line.")
|
|
v1 = point - start
|
|
# point projected onto line start to end:
|
|
v2 = (end - start).project(v1)
|
|
# Pythagoras:
|
|
diff = v1.magnitude_square - v2.magnitude_square
|
|
if diff <= 0.0:
|
|
# This should not happen (abs(v1) > abs(v2)), but floating point
|
|
# imprecision at very small values makes it possible!
|
|
return 0.0
|
|
else:
|
|
return math.sqrt(diff)
|
|
|
|
|
|
def intersection_line_line_3d(
|
|
line1: Sequence[Vec3],
|
|
line2: Sequence[Vec3],
|
|
virtual: bool = True,
|
|
abs_tol: float = 1e-10,
|
|
) -> Optional[Vec3]:
|
|
"""
|
|
Returns the intersection point of two 3D lines, returns ``None`` if lines
|
|
do not intersect.
|
|
|
|
Args:
|
|
line1: first line as tuple of two points as :class:`Vec3` objects
|
|
line2: second line as tuple of two points as :class:`Vec3` objects
|
|
virtual: ``True`` returns any intersection point, ``False`` returns only
|
|
real intersection points
|
|
abs_tol: absolute tolerance for comparisons
|
|
|
|
"""
|
|
from ezdxf.math import intersection_ray_ray_3d, BoundingBox
|
|
|
|
res = intersection_ray_ray_3d(line1, line2, abs_tol)
|
|
if len(res) != 1:
|
|
return None
|
|
|
|
point = res[0]
|
|
if virtual:
|
|
return point
|
|
if BoundingBox(line1).inside(point) and BoundingBox(line2).inside(point):
|
|
return point
|
|
return None
|
|
|
|
|
|
def basic_transformation(
|
|
move: UVec = (0, 0, 0),
|
|
scale: UVec = (1, 1, 1),
|
|
z_rotation: float = 0,
|
|
) -> Matrix44:
|
|
"""Returns a combined transformation matrix for translation, scaling and
|
|
rotation about the z-axis.
|
|
|
|
Args:
|
|
move: translation vector
|
|
scale: x-, y- and z-axis scaling as float triplet, e.g. (2, 2, 1)
|
|
z_rotation: rotation angle about the z-axis in radians
|
|
|
|
"""
|
|
sx, sy, sz = Vec3(scale)
|
|
m = Matrix44.scale(sx, sy, sz)
|
|
if z_rotation:
|
|
m *= Matrix44.z_rotate(z_rotation)
|
|
translate = Vec3(move)
|
|
if not translate.is_null:
|
|
m *= Matrix44.translate(translate.x, translate.y, translate.z)
|
|
return m
|
|
|
|
|
|
PLANE_EPSILON = 1e-9
|
|
|
|
|
|
class PlaneLocationState(IntEnum):
|
|
COPLANAR = 0 # all the vertices are within the plane
|
|
FRONT = 1 # all the vertices are in front of the plane
|
|
BACK = 2 # all the vertices are at the back of the plane
|
|
SPANNING = 3 # some vertices are in front, some in the back
|
|
|
|
|
|
class Plane:
|
|
"""Construction tool for 3D planes.
|
|
|
|
Represents a plane in 3D space as a normal vector and the perpendicular
|
|
distance from the origin.
|
|
"""
|
|
|
|
__slots__ = ("_normal", "_distance_from_origin")
|
|
|
|
def __init__(self, normal: Vec3, distance: float):
|
|
assert normal.is_null is False, "invalid plane normal"
|
|
self._normal = normal
|
|
# the (perpendicular) distance of the plane from (0, 0, 0)
|
|
self._distance_from_origin = distance
|
|
|
|
@property
|
|
def normal(self) -> Vec3:
|
|
"""Normal vector of the plane."""
|
|
return self._normal
|
|
|
|
@property
|
|
def distance_from_origin(self) -> float:
|
|
"""The (perpendicular) distance of the plane from origin (0, 0, 0)."""
|
|
return self._distance_from_origin
|
|
|
|
@property
|
|
def vector(self) -> Vec3:
|
|
"""Returns the location vector."""
|
|
return self._normal * self._distance_from_origin
|
|
|
|
@classmethod
|
|
def from_3p(cls, a: Vec3, b: Vec3, c: Vec3) -> "Plane":
|
|
"""Returns a new plane from 3 points in space."""
|
|
try:
|
|
n = (b - a).cross(c - a).normalize()
|
|
except ZeroDivisionError:
|
|
raise ValueError("undefined plane: colinear vertices")
|
|
return Plane(n, n.dot(a))
|
|
|
|
@classmethod
|
|
def from_vector(cls, vector: UVec) -> "Plane":
|
|
"""Returns a new plane from the given location vector."""
|
|
v = Vec3(vector)
|
|
try:
|
|
return Plane(v.normalize(), v.magnitude)
|
|
except ZeroDivisionError:
|
|
raise ValueError("invalid NULL vector")
|
|
|
|
def __copy__(self) -> "Plane":
|
|
"""Returns a copy of the plane."""
|
|
return self.__class__(self._normal, self._distance_from_origin)
|
|
|
|
copy = __copy__
|
|
|
|
def __repr__(self):
|
|
return f"Plane({repr(self._normal)}, {self._distance_from_origin})"
|
|
|
|
def __eq__(self, other: object) -> bool:
|
|
if not isinstance(other, Plane):
|
|
return NotImplemented
|
|
return self.vector == other.vector
|
|
|
|
def signed_distance_to(self, v: Vec3) -> float:
|
|
"""Returns signed distance of vertex `v` to plane, if distance is > 0,
|
|
`v` is in 'front' of plane, in direction of the normal vector, if
|
|
distance is < 0, `v` is at the 'back' of the plane, in the opposite
|
|
direction of the normal vector.
|
|
|
|
"""
|
|
return self._normal.dot(v) - self._distance_from_origin
|
|
|
|
def distance_to(self, v: Vec3) -> float:
|
|
"""Returns absolute (unsigned) distance of vertex `v` to plane."""
|
|
return math.fabs(self.signed_distance_to(v))
|
|
|
|
def is_coplanar_vertex(self, v: Vec3, abs_tol=1e-9) -> bool:
|
|
"""Returns ``True`` if vertex `v` is coplanar, distance from plane to
|
|
vertex `v` is 0.
|
|
"""
|
|
return self.distance_to(v) < abs_tol
|
|
|
|
def is_coplanar_plane(self, p: "Plane", abs_tol=1e-9) -> bool:
|
|
"""Returns ``True`` if plane `p` is coplanar, normal vectors in same or
|
|
opposite direction.
|
|
"""
|
|
n_is_close = self._normal.isclose
|
|
return n_is_close(p._normal, abs_tol=abs_tol) or n_is_close(
|
|
-p._normal, abs_tol=abs_tol
|
|
)
|
|
|
|
def intersect_line(
|
|
self, start: Vec3, end: Vec3, *, coplanar=True, abs_tol=PLANE_EPSILON
|
|
) -> Optional[Vec3]:
|
|
"""Returns the intersection point of the 3D line from `start` to `end`
|
|
and this plane or ``None`` if there is no intersection. If the argument
|
|
`coplanar` is ``False`` the start- or end point of the line are ignored
|
|
as intersection points.
|
|
|
|
"""
|
|
state0 = self.vertex_location_state(start, abs_tol)
|
|
state1 = self.vertex_location_state(end, abs_tol)
|
|
if state0 is state1:
|
|
return None
|
|
if not coplanar and (
|
|
state0 is PlaneLocationState.COPLANAR
|
|
or state1 is PlaneLocationState.COPLANAR
|
|
):
|
|
return None
|
|
n = self.normal
|
|
weight = (self.distance_from_origin - n.dot(start)) / n.dot(end - start)
|
|
return start.lerp(end, weight)
|
|
|
|
def intersect_ray(self, origin: Vec3, direction: Vec3) -> Optional[Vec3]:
|
|
"""Returns the intersection point of the infinite 3D ray defined by
|
|
`origin` and the `direction` vector and this plane or ``None`` if there
|
|
is no intersection. A coplanar ray does not intersect the plane!
|
|
|
|
"""
|
|
n = self.normal
|
|
try:
|
|
weight = (self.distance_from_origin - n.dot(origin)) / n.dot(
|
|
direction
|
|
)
|
|
except ZeroDivisionError:
|
|
return None
|
|
return origin + (direction * weight)
|
|
|
|
def vertex_location_state(
|
|
self, vertex: Vec3, abs_tol=PLANE_EPSILON
|
|
) -> PlaneLocationState:
|
|
"""Returns the :class:`PlaneLocationState` of the given `vertex` in
|
|
relative to this plane.
|
|
|
|
"""
|
|
distance = self._normal.dot(vertex) - self._distance_from_origin
|
|
if distance < -abs_tol:
|
|
return PlaneLocationState.BACK
|
|
elif distance > abs_tol:
|
|
return PlaneLocationState.FRONT
|
|
else:
|
|
return PlaneLocationState.COPLANAR
|
|
|
|
|
|
def split_polygon_by_plane(
|
|
polygon: Iterable[Vec3],
|
|
plane: Plane,
|
|
*,
|
|
coplanar=True,
|
|
abs_tol=PLANE_EPSILON,
|
|
) -> tuple[Sequence[Vec3], Sequence[Vec3]]:
|
|
"""Split a convex `polygon` by the given `plane`.
|
|
|
|
Returns a tuple of front- and back vertices (front, back).
|
|
Returns also coplanar polygons if the
|
|
argument `coplanar` is ``True``, the coplanar vertices goes into either
|
|
front or back depending on their orientation with respect to this plane.
|
|
|
|
"""
|
|
polygon_type = PlaneLocationState.COPLANAR
|
|
vertex_types: list[PlaneLocationState] = []
|
|
front_vertices: list[Vec3] = []
|
|
back_vertices: list[Vec3] = []
|
|
vertices = list(polygon)
|
|
w = plane.distance_from_origin
|
|
normal = plane.normal
|
|
|
|
# Classify each point as well as the entire polygon into one of four classes:
|
|
# COPLANAR, FRONT, BACK, SPANNING = FRONT + BACK
|
|
for vertex in vertices:
|
|
vertex_type = plane.vertex_location_state(vertex, abs_tol)
|
|
polygon_type |= vertex_type # type: ignore
|
|
vertex_types.append(vertex_type)
|
|
|
|
# Put the polygon in the correct list, splitting it when necessary.
|
|
if polygon_type == PlaneLocationState.COPLANAR:
|
|
if coplanar:
|
|
polygon_normal = best_fit_normal(vertices)
|
|
if normal.dot(polygon_normal) > 0:
|
|
front_vertices = vertices
|
|
else:
|
|
back_vertices = vertices
|
|
elif polygon_type == PlaneLocationState.FRONT:
|
|
front_vertices = vertices
|
|
elif polygon_type == PlaneLocationState.BACK:
|
|
back_vertices = vertices
|
|
elif polygon_type == PlaneLocationState.SPANNING:
|
|
len_vertices = len(vertices)
|
|
for index in range(len_vertices):
|
|
next_index = (index + 1) % len_vertices
|
|
vertex_type = vertex_types[index]
|
|
next_vertex_type = vertex_types[next_index]
|
|
vertex = vertices[index]
|
|
next_vertex = vertices[next_index]
|
|
if vertex_type != PlaneLocationState.BACK: # FRONT or COPLANAR
|
|
front_vertices.append(vertex)
|
|
if vertex_type != PlaneLocationState.FRONT: # BACK or COPLANAR
|
|
back_vertices.append(vertex)
|
|
if (vertex_type | next_vertex_type) == PlaneLocationState.SPANNING:
|
|
interpolation_weight = (w - normal.dot(vertex)) / normal.dot(
|
|
next_vertex - vertex
|
|
)
|
|
plane_intersection_point = vertex.lerp(
|
|
next_vertex, interpolation_weight
|
|
)
|
|
front_vertices.append(plane_intersection_point)
|
|
back_vertices.append(plane_intersection_point)
|
|
if len(front_vertices) < 3:
|
|
front_vertices = []
|
|
if len(back_vertices) < 3:
|
|
back_vertices = []
|
|
return tuple(front_vertices), tuple(back_vertices)
|
|
|
|
|
|
def intersection_line_polygon_3d(
|
|
start: Vec3,
|
|
end: Vec3,
|
|
polygon: Iterable[Vec3],
|
|
*,
|
|
coplanar=True,
|
|
boundary=True,
|
|
abs_tol=PLANE_EPSILON,
|
|
) -> Optional[Vec3]:
|
|
"""Returns the intersection point of the 3D line form `start` to `end` and
|
|
the given `polygon`.
|
|
|
|
Args:
|
|
start: start point of 3D line as :class:`Vec3`
|
|
end: end point of 3D line as :class:`Vec3`
|
|
polygon: 3D polygon as iterable of :class:`Vec3`
|
|
coplanar: if ``True`` a coplanar start- or end point as intersection
|
|
point is valid
|
|
boundary: if ``True`` an intersection point at the polygon boundary line
|
|
is valid
|
|
abs_tol: absolute tolerance for comparisons
|
|
|
|
"""
|
|
vertices = list(polygon)
|
|
if len(vertices) < 3:
|
|
raise ValueError("3 or more vertices required")
|
|
try:
|
|
normal = safe_normal_vector(vertices)
|
|
except ZeroDivisionError:
|
|
return None
|
|
plane = Plane(normal, normal.dot(vertices[0]))
|
|
ip = plane.intersect_line(start, end, coplanar=coplanar, abs_tol=abs_tol)
|
|
if ip is None:
|
|
return None
|
|
return _is_intersection_point_inside_3d_polygon(
|
|
ip, vertices, normal, boundary, abs_tol
|
|
)
|
|
|
|
|
|
def intersection_ray_polygon_3d(
|
|
origin: Vec3,
|
|
direction: Vec3,
|
|
polygon: Iterable[Vec3],
|
|
*,
|
|
boundary=True,
|
|
abs_tol=PLANE_EPSILON,
|
|
) -> Optional[Vec3]:
|
|
"""Returns the intersection point of the infinite 3D ray defined by `origin`
|
|
and the `direction` vector and the given `polygon`.
|
|
|
|
Args:
|
|
origin: origin point of the 3D ray as :class:`Vec3`
|
|
direction: direction vector of the 3D ray as :class:`Vec3`
|
|
polygon: 3D polygon as iterable of :class:`Vec3`
|
|
boundary: if ``True`` intersection points at the polygon boundary line
|
|
are valid
|
|
abs_tol: absolute tolerance for comparisons
|
|
|
|
"""
|
|
|
|
vertices = list(polygon)
|
|
if len(vertices) < 3:
|
|
raise ValueError("3 or more vertices required")
|
|
try:
|
|
normal = safe_normal_vector(vertices)
|
|
except ZeroDivisionError:
|
|
return None
|
|
plane = Plane(normal, normal.dot(vertices[0]))
|
|
ip = plane.intersect_ray(origin, direction)
|
|
if ip is None:
|
|
return None
|
|
return _is_intersection_point_inside_3d_polygon(
|
|
ip, vertices, normal, boundary, abs_tol
|
|
)
|
|
|
|
|
|
def _is_intersection_point_inside_3d_polygon(
|
|
ip: Vec3, vertices: list[Vec3], normal: Vec3, boundary: bool, abs_tol: float
|
|
):
|
|
from ezdxf.math import is_point_in_polygon_2d, OCS
|
|
|
|
ocs = OCS(normal)
|
|
ocs_vertices = Vec2.list(ocs.points_from_wcs(vertices))
|
|
state = is_point_in_polygon_2d(
|
|
Vec2(ocs.from_wcs(ip)), ocs_vertices, abs_tol=abs_tol
|
|
)
|
|
if state > 0 or (boundary and state == 0):
|
|
return ip
|
|
return None
|
|
|
|
|
|
class BarycentricCoordinates:
|
|
"""Barycentric coordinate calculation.
|
|
|
|
The arguments `a`, `b` and `c` are the cartesian coordinates of an arbitrary
|
|
triangle in 3D space. The barycentric coordinates (b1, b2, b3) define the
|
|
linear combination of `a`, `b` and `c` to represent the point `p`::
|
|
|
|
p = a * b1 + b * b2 + c * b3
|
|
|
|
This implementation returns the barycentric coordinates of the normal
|
|
projection of `p` onto the plane defined by (a, b, c).
|
|
|
|
These barycentric coordinates have some useful properties:
|
|
|
|
- if all barycentric coordinates (b1, b2, b3) are in the range [0, 1], then
|
|
the point `p` is inside the triangle (a, b, c)
|
|
- if one of the coordinates is negative, the point `p` is outside the
|
|
triangle
|
|
- the sum of b1, b2 and b3 is always 1
|
|
- the center of "mass" has the barycentric coordinates (1/3, 1/3, 1/3) =
|
|
(a + b + c)/3
|
|
|
|
"""
|
|
|
|
# Source: https://gamemath.com/book/geomprims.html#triangle_barycentric_space
|
|
|
|
def __init__(self, a: UVec, b: UVec, c: UVec):
|
|
self.a = Vec3(a)
|
|
self.b = Vec3(b)
|
|
self.c = Vec3(c)
|
|
self._e1 = self.c - self.b
|
|
self._e2 = self.a - self.c
|
|
self._e3 = self.b - self.a
|
|
e1xe2 = self._e1.cross(self._e2)
|
|
self._n = e1xe2.normalize()
|
|
self._denom = e1xe2.dot(self._n)
|
|
if abs(self._denom) < 1e-9:
|
|
raise ValueError("invalid triangle")
|
|
|
|
def from_cartesian(self, p: UVec) -> Vec3:
|
|
p = Vec3(p)
|
|
n = self._n
|
|
denom = self._denom
|
|
d1 = p - self.a
|
|
d2 = p - self.b
|
|
d3 = p - self.c
|
|
b1 = self._e1.cross(d3).dot(n) / denom
|
|
b2 = self._e2.cross(d1).dot(n) / denom
|
|
b3 = self._e3.cross(d2).dot(n) / denom
|
|
return Vec3(b1, b2, b3)
|
|
|
|
def to_cartesian(self, b: UVec) -> Vec3:
|
|
b1, b2, b3 = Vec3(b).xyz
|
|
return self.a * b1 + self.b * b2 + self.c * b3
|
|
|
|
|
|
def linear_vertex_spacing(start: Vec3, end: Vec3, count: int) -> list[Vec3]:
|
|
"""Returns `count` evenly spaced vertices from `start` to `end`."""
|
|
if count <= 2:
|
|
return [start, end]
|
|
distance = end - start
|
|
if distance.is_null:
|
|
return [start] * count
|
|
|
|
vertices = [start]
|
|
step = distance.normalize(distance.magnitude / (count - 1))
|
|
for _ in range(1, count - 1):
|
|
start += step
|
|
vertices.append(start)
|
|
vertices.append(end)
|
|
return vertices
|
|
|
|
|
|
def has_matrix_3d_stretching(m: Matrix44) -> bool:
|
|
"""Returns ``True`` if matrix `m` performs a non-uniform xyz-scaling.
|
|
Uniform scaling is not stretching in this context.
|
|
|
|
Does not check if the target system is a cartesian coordinate system, use the
|
|
:class:`~ezdxf.math.Matrix44` property :attr:`~ezdxf.math.Matrix44.is_cartesian`
|
|
for that.
|
|
"""
|
|
ux_mag_sqr = m.transform_direction(X_AXIS).magnitude_square
|
|
uy = m.transform_direction(Y_AXIS)
|
|
uz = m.transform_direction(Z_AXIS)
|
|
return not math.isclose(
|
|
ux_mag_sqr, uy.magnitude_square
|
|
) or not math.isclose(ux_mag_sqr, uz.magnitude_square)
|
|
|
|
|
|
def spherical_envelope(points: Sequence[UVec]) -> tuple[Vec3, float]:
|
|
"""Calculate the spherical envelope for the given points. Returns the
|
|
centroid (a.k.a. geometric center) and the radius of the enclosing sphere.
|
|
|
|
.. note::
|
|
|
|
The result does not represent the minimal bounding sphere!
|
|
|
|
"""
|
|
centroid = Vec3.sum(points) / len(points)
|
|
radius = max(centroid.distance(p) for p in points)
|
|
return centroid, radius
|
|
|
|
|
|
def inscribe_circle_tangent_length(
|
|
dir1: Vec3, dir2: Vec3, radius: float
|
|
) -> float:
|
|
"""Returns the tangent length of an inscribe-circle of the given `radius`.
|
|
The direction `dir1` and `dir2` define two intersection tangents,
|
|
The tangent length is the distance from the intersection point of the
|
|
tangents to the touching point on the inscribe-circle.
|
|
|
|
"""
|
|
alpha = dir1.angle_between(dir2)
|
|
beta = PI2 - (alpha / 2.0)
|
|
if math.isclose(abs(beta), PI2):
|
|
return 0.0
|
|
return abs(math.tan(beta) * radius)
|
|
|
|
|
|
def bending_angle(dir1: Vec3, dir2: Vec3, normal=Z_AXIS) -> float:
|
|
"""Returns the bending angle from `dir1` to `dir2` in radians.
|
|
|
|
The normal vector is required to detect the bending orientation,
|
|
an angle > 0 bends to the "left" an angle < 0 bends to the "right".
|
|
|
|
"""
|
|
angle = dir1.angle_between(dir2)
|
|
nn = dir1.cross(dir2)
|
|
if nn.isclose(normal) or nn.is_null:
|
|
return angle
|
|
elif nn.isclose(-normal):
|
|
return -angle
|
|
raise ValueError("invalid normal vector")
|
|
|
|
|
|
def any_vertex_inside_face(vertices: Sequence[Vec3]) -> Vec3:
|
|
"""Returns a vertex from the "inside" of the given face.
|
|
"""
|
|
# Triangulation is for concave shapes important!
|
|
from ezdxf.math.triangulation import mapbox_earcut_3d
|
|
it = mapbox_earcut_3d(vertices)
|
|
return Vec3.sum(next(it)) / 3.0
|
|
|
|
|
|
def front_faces_intersect_face_normal(
|
|
faces: Sequence[Sequence[Vec3]],
|
|
face: Sequence[Vec3],
|
|
*,
|
|
abs_tol=PLANE_EPSILON,
|
|
) -> int:
|
|
"""Returns the count of intersections of the normal-vector of the given
|
|
`face` with the `faces` in front of this `face`.
|
|
|
|
A counter-clockwise vertex order is assumed!
|
|
|
|
"""
|
|
def is_face_in_front_of_detector(vertices: Sequence[Vec3]) -> bool:
|
|
if len(vertices) < 3:
|
|
return False
|
|
return any(
|
|
detector_plane.signed_distance_to(v) > abs_tol for v in vertices
|
|
)
|
|
|
|
# face-normal for counter-clockwise vertex order
|
|
face_normal = safe_normal_vector(face)
|
|
origin = any_vertex_inside_face(face)
|
|
detector_plane = Plane(face_normal, face_normal.dot(origin))
|
|
|
|
# collect all faces with at least one vertex in front of the detection plane
|
|
front_faces = (f for f in faces if is_face_in_front_of_detector(f))
|
|
|
|
# The detector face is excluded by the
|
|
# is_face_in_front_of_detector() function!
|
|
|
|
intersection_points: set[Vec3] = set()
|
|
for face in front_faces:
|
|
ip = intersection_ray_polygon_3d(
|
|
origin, face_normal, face, boundary=True, abs_tol=abs_tol
|
|
)
|
|
if ip is None:
|
|
continue
|
|
if detector_plane.signed_distance_to(ip) > abs_tol:
|
|
# Only count unique intersections points, the ip could lie on an
|
|
# edge (2 ips) or even a corner vertex (3 or more ips).
|
|
intersection_points.add(ip.round(6))
|
|
return len(intersection_points)
|
|
|
|
|
|
def is_face_normal_pointing_outwards(
|
|
faces: Sequence[Sequence[Vec3]],
|
|
face: Sequence[Vec3],
|
|
*,
|
|
abs_tol=PLANE_EPSILON,
|
|
) -> bool:
|
|
"""Returns ``True`` if the face-normal for the given `face` of a
|
|
closed surface is pointing outwards. A counter-clockwise vertex order is
|
|
assumed, for faces with clockwise vertex order the result is inverted,
|
|
therefore ``False`` is pointing outwards.
|
|
|
|
This function does not check if the `faces` are a closed surface.
|
|
|
|
"""
|
|
return (
|
|
front_faces_intersect_face_normal(faces, face, abs_tol=abs_tol) % 2 == 0
|
|
)
|