Files
stepanalyser/.venv/lib/python3.12/site-packages/ezdxf/math/_bezier3p.py
Christian Anetzberger a197de9456 initial
2026-01-22 20:23:51 +01:00

201 lines
6.4 KiB
Python

# Copyright (c) 2021-2024 Manfred Moitzi
# License: MIT License
# pylint: disable=unused-variable
from __future__ import annotations
from typing import (
Iterator,
Sequence,
Optional,
Generic,
TypeVar,
)
import math
# The pure Python implementation can't import from ._ctypes or ezdxf.math!
from ._vector import Vec3, Vec2
from ._matrix44 import Matrix44
__all__ = ["Bezier3P"]
def check_if_in_valid_range(t: float) -> None:
if not 0.0 <= t <= 1.0:
raise ValueError("t not in range [0 to 1]")
T = TypeVar("T", Vec2, Vec3)
class Bezier3P(Generic[T]):
"""Implements an optimized quadratic `Bézier curve`_ for exact 3 control
points.
The class supports points of type :class:`Vec2` and :class:`Vec3` as input, the
class instances are immutable.
Args:
defpoints: sequence of definition points as :class:`Vec2` or
:class:`Vec3` compatible objects.
"""
__slots__ = ("_control_points", "_offset")
def __init__(self, defpoints: Sequence[T]):
if len(defpoints) != 3:
raise ValueError("Three control points required.")
point_type = defpoints[0].__class__
if not point_type.__name__ in ("Vec2", "Vec3"): # Cython types!!!
raise TypeError(f"invalid point type: {point_type.__name__}")
# The start point is the curve offset
offset: T = defpoints[0]
self._offset: T = offset
# moving the curve to the origin reduces floating point errors:
self._control_points: tuple[T, ...] = tuple(p - offset for p in defpoints)
@property
def control_points(self) -> Sequence[T]:
"""Control points as tuple of :class:`Vec3` or :class:`Vec2` objects."""
# ezdxf optimization: p0 is always (0, 0, 0)
_, p1, p2 = self._control_points
offset = self._offset
return offset, p1 + offset, p2 + offset
def tangent(self, t: float) -> T:
"""Returns direction vector of tangent for location `t` at the
Bèzier-curve.
Args:
t: curve position in the range ``[0, 1]``
"""
check_if_in_valid_range(t)
return self._get_curve_tangent(t)
def point(self, t: float) -> T:
"""Returns point for location `t` at the Bèzier-curve.
Args:
t: curve position in the range ``[0, 1]``
"""
check_if_in_valid_range(t)
return self._get_curve_point(t)
def approximate(self, segments: int) -> Iterator[T]:
"""Approximate `Bézier curve`_ by vertices, yields `segments` + 1
vertices as ``(x, y[, z])`` tuples.
Args:
segments: count of segments for approximation
"""
if segments < 1:
raise ValueError(segments)
delta_t: float = 1.0 / segments
cp = self.control_points
yield cp[0]
for segment in range(1, segments):
yield self._get_curve_point(delta_t * segment)
yield cp[2]
def approximated_length(self, segments: int = 128) -> float:
"""Returns estimated length of Bèzier-curve as approximation by line
`segments`.
"""
length: float = 0.0
prev_point: Optional[T] = None
for point in self.approximate(segments):
if prev_point is not None:
length += prev_point.distance(point)
prev_point = point
return length
def flattening(self, distance: float, segments: int = 4) -> Iterator[T]:
"""Adaptive recursive flattening. The argument `segments` is the
minimum count of approximation segments, if the distance from the center
of the approximation segment to the curve is bigger than `distance` the
segment will be subdivided.
Args:
distance: maximum distance from the center of the quadratic (C2)
curve to the center of the linear (C1) curve between two
approximation points to determine if a segment should be
subdivided.
segments: minimum segment count
"""
stack: list[tuple[float, T]] = []
dt: float = 1.0 / segments
t0: float = 0.0
t1: float
cp = self.control_points
start_point: T = cp[0]
end_point: T
yield start_point
while t0 < 1.0:
t1 = t0 + dt
if math.isclose(t1, 1.0):
end_point = cp[2]
t1 = 1.0
else:
end_point = self._get_curve_point(t1)
while True:
mid_t: float = (t0 + t1) * 0.5
mid_point: T = self._get_curve_point(mid_t)
chk_point: T = start_point.lerp(end_point)
d = chk_point.distance(mid_point)
if d < distance:
yield end_point
t0 = t1
start_point = end_point
if stack:
t1, end_point = stack.pop()
else:
break
else:
stack.append((t1, end_point))
t1 = mid_t
end_point = mid_point
def _get_curve_point(self, t: float) -> T:
# 1st control point (p0) is always (0, 0, 0)
# => p0 * a is always (0, 0, 0)
_, p1, p2 = self._control_points
_1_minus_t = 1.0 - t
# a = (1 - t) ** 2
b = 2.0 * t * _1_minus_t
c = t * t
# add offset at last - it is maybe very large
return p1 * b + p2 * c + self._offset
def _get_curve_tangent(self, t: float) -> T:
# tangent vector is independent from offset location!
# 1st control point (p0) is always (0, 0, 0)
# => p0 * a is always (0, 0, 0)
_, p1, p2 = self._control_points
# a = -2 * (1 - t)
b = 2.0 - 4.0 * t
c = 2.0 * t
return p1 * b + p2 * c
def reverse(self) -> Bezier3P[T]:
"""Returns a new Bèzier-curve with reversed control point order."""
return Bezier3P(list(reversed(self.control_points)))
def transform(self, m: Matrix44) -> Bezier3P[Vec3]:
"""General transformation interface, returns a new :class:`Bezier3P`
curve and it is always a 3D curve.
Args:
m: 4x4 transformation :class:`Matrix44`
"""
defpoints = Vec3.generate(self.control_points)
return Bezier3P(tuple(m.transform_vertices(defpoints)))