Files
stepanalyser/.venv/lib/python3.12/site-packages/ezdxf/math/_bezier4p.py
Christian Anetzberger a197de9456 initial
2026-01-22 20:23:51 +01:00

337 lines
11 KiB
Python

# Copyright (c) 2010-2024 Manfred Moitzi
# License: MIT License
from __future__ import annotations
from typing import (
TYPE_CHECKING,
Iterable,
Iterator,
Sequence,
TypeVar,
Generic,
)
import math
# The pure Python implementation can't import from ._ctypes or ezdxf.math!
from ._vector import Vec3, Vec2
from ._matrix44 import Matrix44
from ._construct import arc_angle_span_deg
if TYPE_CHECKING:
from ezdxf.math import UVec
from ezdxf.math.ellipse import ConstructionEllipse
__all__ = [
"Bezier4P",
"cubic_bezier_arc_parameters",
"cubic_bezier_from_arc",
"cubic_bezier_from_ellipse",
]
T = TypeVar("T", Vec2, Vec3)
class Bezier4P(Generic[T]):
"""Implements an optimized cubic `Bézier curve`_ for exact 4 control points.
A `Bézier curve`_ is a parametric curve, parameter `t` goes from 0 to 1,
where 0 is the first control point and 1 is the fourth control point.
The class supports points of type :class:`Vec2` and :class:`Vec3` as input, the
class instances are immutable.
Args:
defpoints: sequence of definition points as :class:`Vec2` or
:class:`Vec3` compatible objects.
"""
__slots__ = ("_control_points", "_offset")
def __init__(self, defpoints: Sequence[T]):
if len(defpoints) != 4:
raise ValueError("Four control points required.")
point_type = defpoints[0].__class__
if not point_type.__name__ in ("Vec2", "Vec3"): # Cython types!!!
raise TypeError(f"invalid point type: {point_type.__name__}")
# The start point is the curve offset
offset: T = defpoints[0]
self._offset: T = offset
# moving the curve to the origin reduces floating point errors:
self._control_points: tuple[T, ...] = tuple(p - offset for p in defpoints)
@property
def control_points(self) -> Sequence[T]:
"""Control points as tuple of :class:`Vec3` or :class:`Vec2` objects."""
# ezdxf optimization: p0 is always (0, 0, 0)
p0, p1, p2, p3 = self._control_points
offset = self._offset
return offset, p1 + offset, p2 + offset, p3 + offset
def tangent(self, t: float) -> T:
"""Returns direction vector of tangent for location `t` at the
Bèzier-curve.
Args:
t: curve position in the range ``[0, 1]``
"""
if not (0 <= t <= 1.0):
raise ValueError("t not in range [0 to 1]")
return self._get_curve_tangent(t)
def point(self, t: float) -> T:
"""Returns point for location `t` at the Bèzier-curve.
Args:
t: curve position in the range ``[0, 1]``
"""
if not (0 <= t <= 1.0):
raise ValueError("t not in range [0 to 1]")
return self._get_curve_point(t)
def approximate(self, segments: int) -> Iterator[T]:
"""Approximate `Bézier curve`_ by vertices, yields `segments` + 1
vertices as ``(x, y[, z])`` tuples.
Args:
segments: count of segments for approximation
"""
if segments < 1:
raise ValueError(segments)
delta_t = 1.0 / segments
cp = self.control_points
yield cp[0]
for segment in range(1, segments):
yield self._get_curve_point(delta_t * segment)
yield cp[3]
def flattening(self, distance: float, segments: int = 4) -> Iterator[T]:
"""Adaptive recursive flattening. The argument `segments` is the
minimum count of approximation segments, if the distance from the center
of the approximation segment to the curve is bigger than `distance` the
segment will be subdivided.
Args:
distance: maximum distance from the center of the cubic (C3)
curve to the center of the linear (C1) curve between two
approximation points to determine if a segment should be
subdivided.
segments: minimum segment count
"""
stack: list[tuple[float, T]] = []
dt: float = 1.0 / segments
t0: float = 0.0
t1: float
cp = self.control_points
start_point: T = cp[0]
end_point: T
yield start_point
while t0 < 1.0:
t1 = t0 + dt
if math.isclose(t1, 1.0):
end_point = cp[3]
t1 = 1.0
else:
end_point = self._get_curve_point(t1)
while True:
mid_t: float = (t0 + t1) * 0.5
mid_point: T = self._get_curve_point(mid_t)
chk_point: T = start_point.lerp(end_point)
d = chk_point.distance(mid_point)
if d < distance:
yield end_point
t0 = t1
start_point = end_point
if stack:
t1, end_point = stack.pop()
else:
break
else:
stack.append((t1, end_point))
t1 = mid_t
end_point = mid_point
def _get_curve_point(self, t: float) -> T:
# 1st control point (p0) is always (0, 0, 0)
# => p0 * a is always (0, 0, 0)
# add offset at last - it is maybe very large
_, p1, p2, p3 = self._control_points
t2 = t * t
_1_minus_t = 1.0 - t
# a = _1_minus_t_square * _1_minus_t
b = 3.0 * _1_minus_t * _1_minus_t * t
c = 3.0 * _1_minus_t * t2
d = t2 * t
return p1 * b + p2 * c + p3 * d + self._offset
def _get_curve_tangent(self, t: float) -> T:
# tangent vector is independent from offset location!
# 1st control point (p0) is always (0, 0, 0)
# => p0 * a is always (0, 0, 0)
_, p1, p2, p3 = self._control_points
t2 = t * t
# a = -3.0 * (1.0 - t) ** 2
b = 3.0 * (1.0 - 4.0 * t + 3.0 * t2)
c = 3.0 * t * (2.0 - 3.0 * t)
d = 3.0 * t2
return p1 * b + p2 * c + p3 * d
def approximated_length(self, segments: int = 128) -> float:
"""Returns estimated length of Bèzier-curve as approximation by line
`segments`.
"""
length = 0.0
prev_point = None
for point in self.approximate(segments):
if prev_point is not None:
length += prev_point.distance(point)
prev_point = point
return length
def reverse(self) -> Bezier4P[T]:
"""Returns a new Bèzier-curve with reversed control point order."""
return Bezier4P(list(reversed(self.control_points)))
def transform(self, m: Matrix44) -> Bezier4P[Vec3]:
"""General transformation interface, returns a new :class:`Bezier4p`
curve as a 3D curve.
Args:
m: 4x4 transformation :class:`Matrix44`
"""
defpoints = Vec3.generate(self.control_points)
return Bezier4P(tuple(m.transform_vertices(defpoints)))
def cubic_bezier_from_arc(
center: UVec = (0, 0, 0),
radius: float = 1,
start_angle: float = 0,
end_angle: float = 360,
segments: int = 1,
) -> Iterator[Bezier4P[Vec3]]:
"""Returns an approximation for a circular 2D arc by multiple cubic
Bézier-curves.
Args:
center: circle center as :class:`Vec3` compatible object
radius: circle radius
start_angle: start angle in degrees
end_angle: end angle in degrees
segments: count of Bèzier-curve segments, at least one segment for each
quarter (90 deg), 1 for as few as possible.
"""
center_: Vec3 = Vec3(center)
radius = float(radius)
angle_span: float = arc_angle_span_deg(start_angle, end_angle)
if abs(angle_span) < 1e-9:
return
s: float = start_angle
start_angle = math.radians(s) % math.tau
end_angle = math.radians(s + angle_span)
while start_angle > end_angle:
end_angle += math.tau
for control_points in cubic_bezier_arc_parameters(start_angle, end_angle, segments):
defpoints = [center_ + (p * radius) for p in control_points]
yield Bezier4P(defpoints)
PI_2: float = math.pi / 2.0
def cubic_bezier_from_ellipse(
ellipse: "ConstructionEllipse", segments: int = 1
) -> Iterator[Bezier4P[Vec3]]:
"""Returns an approximation for an elliptic arc by multiple cubic
Bézier-curves.
Args:
ellipse: ellipse parameters as :class:`~ezdxf.math.ConstructionEllipse`
object
segments: count of Bèzier-curve segments, at least one segment for each
quarter (π/2), 1 for as few as possible.
"""
param_span: float = ellipse.param_span
if abs(param_span) < 1e-9:
return
start_angle: float = ellipse.start_param % math.tau
end_angle: float = start_angle + param_span
while start_angle > end_angle:
end_angle += math.tau
def transform(points: Iterable[Vec3]) -> Iterator[Vec3]:
center = Vec3(ellipse.center)
x_axis: Vec3 = ellipse.major_axis
y_axis: Vec3 = ellipse.minor_axis
for p in points:
yield center + x_axis * p.x + y_axis * p.y
for defpoints in cubic_bezier_arc_parameters(start_angle, end_angle, segments):
yield Bezier4P(tuple(transform(defpoints)))
# Circular arc to Bezier curve:
# Source: https://stackoverflow.com/questions/1734745/how-to-create-circle-with-b%C3%A9zier-curves
# Optimization: https://spencermortensen.com/articles/bezier-circle/
# actual c = 0.5522847498307935 = 4.0/3.0*(sqrt(2)-1.0) and max. deviation of ~0.03%
DEFAULT_TANGENT_FACTOR = 4.0 / 3.0 # 1.333333333333333333
# optimal c = 0.551915024494 and max. deviation of ~0.02%
OPTIMIZED_TANGENT_FACTOR = 1.3324407374108935
# Not sure if this is the correct way to apply this optimization,
# so i stick to the original version for now:
TANGENT_FACTOR = DEFAULT_TANGENT_FACTOR
def cubic_bezier_arc_parameters(
start_angle: float, end_angle: float, segments: int = 1
) -> Iterator[tuple[Vec3, Vec3, Vec3, Vec3]]:
"""Yields cubic Bézier-curve parameters for a circular 2D arc with center
at (0, 0) and a radius of 1 in the form of [start point, 1. control point,
2. control point, end point].
Args:
start_angle: start angle in radians
end_angle: end angle in radians (end_angle > start_angle!)
segments: count of Bèzier-curve segments, at least one segment for each
quarter (π/2)
"""
if segments < 1:
raise ValueError("Invalid argument segments (>= 1).")
delta_angle: float = end_angle - start_angle
if delta_angle > 0:
arc_count = max(math.ceil(delta_angle / math.pi * 2.0), segments)
else:
raise ValueError("Delta angle from start- to end angle has to be > 0.")
segment_angle: float = delta_angle / arc_count
tangent_length: float = TANGENT_FACTOR * math.tan(segment_angle / 4.0)
angle: float = start_angle
end_point: Vec3 = Vec3.from_angle(angle)
for _ in range(arc_count):
start_point = end_point
angle += segment_angle
end_point = Vec3.from_angle(angle)
control_point_1 = start_point + (
-start_point.y * tangent_length,
start_point.x * tangent_length,
)
control_point_2 = end_point + (
end_point.y * tangent_length,
-end_point.x * tangent_length,
)
yield start_point, control_point_1, control_point_2, end_point