Files
stepanalyser/.venv/lib/python3.12/site-packages/ezdxf/math/_bspline.py
Christian Anetzberger a197de9456 initial
2026-01-22 20:23:51 +01:00

276 lines
9.0 KiB
Python

# Copyright (c) 2021-2022, Manfred Moitzi
# License: MIT License
# Pure Python implementation of the B-spline basis function.
from __future__ import annotations
from typing import Iterable, Sequence, Optional
import math
import bisect
# The pure Python implementation can't import from ._ctypes or ezdxf.math!
from ._vector import Vec3, NULLVEC
from .linalg import binomial_coefficient
__all__ = ["Basis", "Evaluator"]
class Basis:
"""Immutable Basis function class."""
__slots__ = ("_knots", "_weights", "_order", "_count")
def __init__(
self,
knots: Iterable[float],
order: int,
count: int,
weights: Optional[Sequence[float]] = None,
):
self._knots = tuple(knots)
self._weights = tuple(weights or [])
self._order: int = int(order)
self._count: int = int(count)
# validation checks:
len_weights = len(self._weights)
if len_weights != 0 and len_weights != self._count:
raise ValueError("invalid weight count")
if len(self._knots) != self._order + self._count:
raise ValueError("invalid knot count")
@property
def max_t(self) -> float:
return self._knots[-1]
@property
def order(self) -> int:
return self._order
@property
def degree(self) -> int:
return self._order - 1
@property
def knots(self) -> tuple[float, ...]:
return self._knots
@property
def weights(self) -> tuple[float, ...]:
return self._weights
@property
def is_rational(self) -> bool:
"""Returns ``True`` if curve is a rational B-spline. (has weights)"""
return bool(self._weights)
def basis_vector(self, t: float) -> list[float]:
"""Returns the expanded basis vector."""
span = self.find_span(t)
p = self._order - 1
front = span - p
back = self._count - span - 1
basis = self.basis_funcs(span, t)
return ([0.0] * front) + basis + ([0.0] * back)
def find_span(self, u: float) -> int:
"""Determine the knot span index."""
# Linear search is more reliable than binary search of the Algorithm A2.1
# from The NURBS Book by Piegl & Tiller.
knots = self._knots
count = self._count # text book: n+1
if u >= knots[count]: # special case
return count - 1 # n
p = self._order - 1
# common clamped spline:
if knots[p] == 0.0: # use binary search
# This is fast and works most of the time,
# but Test 621 : test_weired_closed_spline()
# goes into an infinity loop, because of
# a weird knot configuration.
return bisect.bisect_right(knots, u, p, count) - 1
else: # use linear search
span = 0
while knots[span] <= u and span < count:
span += 1
return span - 1
def basis_funcs(self, span: int, u: float) -> list[float]:
# Source: The NURBS Book: Algorithm A2.2
order = self._order
knots = self._knots
N = [0.0] * order
left = list(N)
right = list(N)
N[0] = 1.0
for j in range(1, order):
left[j] = u - knots[max(0, span + 1 - j)]
right[j] = knots[span + j] - u
saved = 0.0
for r in range(j):
temp = N[r] / (right[r + 1] + left[j - r])
N[r] = saved + right[r + 1] * temp
saved = left[j - r] * temp
N[j] = saved
if self.is_rational:
return self.span_weighting(N, span)
else:
return N
def span_weighting(self, nbasis: list[float], span: int) -> list[float]:
size = len(nbasis)
weights = self._weights[span - self._order + 1 : span + 1]
products = [nb * w for nb, w in zip(nbasis, weights)]
s = sum(products)
return [0.0] * size if s == 0.0 else [p / s for p in products]
def basis_funcs_derivatives(self, span: int, u: float, n: int = 1):
# Source: The NURBS Book: Algorithm A2.3
order = self._order
p = order - 1
n = min(n, p)
knots = self._knots
left = [1.0] * order
right = [1.0] * order
ndu = [[1.0] * order for _ in range(order)]
for j in range(1, order):
left[j] = u - knots[max(0, span + 1 - j)]
right[j] = knots[span + j] - u
saved = 0.0
for r in range(j):
# lower triangle
ndu[j][r] = right[r + 1] + left[j - r]
temp = ndu[r][j - 1] / ndu[j][r]
# upper triangle
ndu[r][j] = saved + (right[r + 1] * temp)
saved = left[j - r] * temp
ndu[j][j] = saved
# load the basis_vector functions
derivatives = [[0.0] * order for _ in range(order)]
for j in range(order):
derivatives[0][j] = ndu[j][p]
# loop over function index
a = [[1.0] * order, [1.0] * order]
for r in range(order):
s1 = 0
s2 = 1
# alternate rows in array a
a[0][0] = 1.0
# loop to compute kth derivative
for k in range(1, n + 1):
d = 0.0
rk = r - k
pk = p - k
if r >= k:
a[s2][0] = a[s1][0] / ndu[pk + 1][rk]
d = a[s2][0] * ndu[rk][pk]
if rk >= -1:
j1 = 1
else:
j1 = -rk
if (r - 1) <= pk:
j2 = k - 1
else:
j2 = p - r
for j in range(j1, j2 + 1):
a[s2][j] = (a[s1][j] - a[s1][j - 1]) / ndu[pk + 1][rk + j]
d += a[s2][j] * ndu[rk + j][pk]
if r <= pk:
a[s2][k] = -a[s1][k - 1] / ndu[pk + 1][r]
d += a[s2][k] * ndu[r][pk]
derivatives[k][r] = d
# Switch rows
s1, s2 = s2, s1
# Multiply through by the correct factors
r = float(p) # type: ignore
for k in range(1, n + 1):
for j in range(order):
derivatives[k][j] *= r
r *= p - k
return derivatives[: n + 1]
class Evaluator:
"""B-spline curve point and curve derivative evaluator."""
__slots__ = ["_basis", "_control_points"]
def __init__(self, basis: Basis, control_points: Sequence[Vec3]):
self._basis = basis
self._control_points = control_points
def point(self, u: float) -> Vec3:
# Source: The NURBS Book: Algorithm A3.1
basis = self._basis
control_points = self._control_points
if math.isclose(u, basis.max_t):
u = basis.max_t
p = basis.degree
span = basis.find_span(u)
N = basis.basis_funcs(span, u)
return Vec3.sum(
N[i] * control_points[span - p + i] for i in range(p + 1)
)
def points(self, t: Iterable[float]) -> Iterable[Vec3]:
for u in t:
yield self.point(u)
def derivative(self, u: float, n: int = 1) -> list[Vec3]:
"""Return point and derivatives up to n <= degree for parameter u."""
# Source: The NURBS Book: Algorithm A3.2
basis = self._basis
control_points = self._control_points
if math.isclose(u, basis.max_t):
u = basis.max_t
p = basis.degree
span = basis.find_span(u)
basis_funcs_ders = basis.basis_funcs_derivatives(span, u, n)
if basis.is_rational:
# Homogeneous point representation required:
# (x*w, y*w, z*w, w)
CKw: list[Vec3] = []
wders: list[float] = []
weights = basis.weights
for k in range(n + 1):
v = NULLVEC
wder = 0.0
for j in range(p + 1):
index = span - p + j
bas_func_weight = basis_funcs_ders[k][j] * weights[index]
# control_point * weight * bas_func_der = (x*w, y*w, z*w) * bas_func_der
v += control_points[index] * bas_func_weight
wder += bas_func_weight
CKw.append(v)
wders.append(wder)
# Source: The NURBS Book: Algorithm A4.2
CK: list[Vec3] = []
for k in range(n + 1):
v = CKw[k]
for i in range(1, k + 1):
v -= binomial_coefficient(k, i) * wders[i] * CK[k - i]
CK.append(v / wders[0])
else:
CK = [
Vec3.sum(
basis_funcs_ders[k][j] * control_points[span - p + j]
for j in range(p + 1)
)
for k in range(n + 1)
]
return CK
def derivatives(
self, t: Iterable[float], n: int = 1
) -> Iterable[list[Vec3]]:
for u in t:
yield self.derivative(u, n)