Files
stepanalyser/.venv/lib/python3.12/site-packages/ezdxf/math/bezier_interpolation.py
Christian Anetzberger a197de9456 initial
2026-01-22 20:23:51 +01:00

77 lines
2.3 KiB
Python

# Copyright (c) 2010-2023 Manfred Moitzi
# License: MIT License
from __future__ import annotations
from typing import Iterable, Sequence
from ezdxf.math import Vec3, Bezier4P, UVec
# These are low-level interpolation tools for B-splines, which can not be
# integrated into other curve related modules!
__all__ = ["cubic_bezier_interpolation", "tangents_cubic_bezier_interpolation"]
def cubic_bezier_interpolation(
points: Iterable[UVec],
) -> Iterable[Bezier4P[Vec3]]:
"""Returns an interpolation curve for given data `points` as multiple cubic
Bézier-curves. Returns n-1 cubic Bézier-curves for n given data points,
curve i goes from point[i] to point[i+1].
Args:
points: data points
"""
from ezdxf.math.linalg import tridiagonal_matrix_solver
# Source: https://towardsdatascience.com/b%C3%A9zier-interpolation-8033e9a262c2
pnts = Vec3.tuple(points)
if len(pnts) < 3:
return
num = len(pnts) - 1
# setup tri-diagonal matrix (a, b, c)
b = [4.0] * num
a = [1.0] * num
c = [1.0] * num
b[0] = 2.0
b[num - 1] = 7.0
a[num - 1] = 2.0
# setup right-hand side quantities
points_vector = [pnts[0] + 2.0 * pnts[1]]
points_vector.extend(
2.0 * (2.0 * pnts[i] + pnts[i + 1]) for i in range(1, num - 1)
)
points_vector.append(8.0 * pnts[num - 1] + pnts[num])
# solve tri-diagonal linear equation system
solution = tridiagonal_matrix_solver([a, b, c], points_vector)
control_points_1 = Vec3.list(solution.rows())
control_points_2 = [
p * 2.0 - cp for p, cp in zip(pnts[1:], control_points_1[1:])
]
control_points_2.append((control_points_1[num - 1] + pnts[num]) / 2.0)
for defpoints in zip(
pnts, control_points_1, control_points_2, pnts[1:]
):
yield Bezier4P(defpoints)
def tangents_cubic_bezier_interpolation(
fit_points: Sequence[Vec3], normalize=True
) -> list[Vec3]:
if len(fit_points) < 3:
raise ValueError("At least 3 points required")
curves = list(cubic_bezier_interpolation(fit_points))
tangents = [
(curve.control_points[1] - curve.control_points[0]) for curve in curves
]
last_points = curves[-1].control_points
tangents.append(last_points[3] - last_points[2])
if normalize:
tangents = [t.normalize() for t in tangents]
return tangents