Files
stepanalyser/.venv/lib/python3.12/site-packages/ezdxf/math/cspline.py
Christian Anetzberger a197de9456 initial
2026-01-22 20:23:51 +01:00

41 lines
1.2 KiB
Python

# Copyright (c) 2020-2024, Manfred Moitzi
# License: MIT License
from __future__ import annotations
from typing import Iterable
import numpy as np
from ezdxf.math import Vec3
class CSpline:
"""
In numerical analysis, a cubic Hermite spline or cubic Hermite interpolator
is a spline where each piece is a third-degree polynomial specified in
Hermite form, that is, by its values and first derivatives at the end points
of the corresponding domain interval.
Source: https://en.wikipedia.org/wiki/Cubic_Hermite_spline
"""
# https://de.wikipedia.org/wiki/Kubisch_Hermitescher_Spline
def __init__(self, p0: Vec3, p1: Vec3, m0: Vec3, m1: Vec3):
self.p0 = p0
self.p1 = p1
self.m0 = m0
self.m1 = m1
def point(self, t: float) -> Vec3:
t2 = t * t
t3 = t2 * t
h00 = t3 * 2.0 - t2 * 3.0 + 1.0
h10 = -t3 * 2.0 + t2 * 3.0
h01 = t3 - t2 * 2.0 + t
h11 = t3 - t2
return self.p0 * h00 + self.p1 * h10 + self.m0 * h01 + self.m1 * h11
def approximate(csplines: Iterable[CSpline], count) -> Iterable[Vec3]:
for cspline in csplines:
for t in np.linspace(0.0, 1.0, count):
yield cspline.point(t)