Files
stepanalyser/.venv/lib/python3.12/site-packages/ezdxf/path/shapes.py
Christian Anetzberger a197de9456 initial
2026-01-22 20:23:51 +01:00

307 lines
9.6 KiB
Python

# Copyright (c) 2021-2024, Manfred Moitzi
# License: MIT License
from __future__ import annotations
import math
from ezdxf.math import (
cubic_bezier_arc_parameters,
Matrix44,
UVec,
basic_transformation,
Vec3,
)
from ezdxf.render import forms
from .path import Path
from . import converter
__all__ = [
"unit_circle",
"elliptic_transformation",
"rect",
"ngon",
"wedge",
"star",
"gear",
"helix",
]
def unit_circle(
start_angle: float = 0,
end_angle: float = math.tau,
segments: int = 1,
transform: Matrix44 | None = None,
) -> Path:
"""Returns a unit circle as a :class:`Path` object, with the center at
(0, 0, 0) and the radius of 1 drawing unit.
The arc spans from the start- to the end angle in counter-clockwise
orientation. The end angle has to be greater than the start angle and the
angle span has to be greater than 0.
Args:
start_angle: start angle in radians
end_angle: end angle in radians (end_angle > start_angle!)
segments: count of Bèzier-curve segments, default is one segment for
each arc quarter (π/2)
transform: transformation Matrix applied to the unit circle
"""
path = Path()
start_flag = True
for start, ctrl1, ctrl2, end in cubic_bezier_arc_parameters(
start_angle, end_angle, segments
):
if start_flag:
path.start = start
start_flag = False
path.curve4_to(end, ctrl1, ctrl2)
if transform is None:
return path
else:
return path.transform(transform)
def wedge(
start_angle: float,
end_angle: float,
segments: int = 1,
transform: Matrix44 | None = None,
) -> Path:
"""Returns a wedge as a :class:`Path` object, with the center at
(0, 0, 0) and the radius of 1 drawing unit.
The arc spans from the start- to the end angle in counter-clockwise
orientation. The end angle has to be greater than the start angle and the
angle span has to be greater than 0.
Args:
start_angle: start angle in radians
end_angle: end angle in radians (end_angle > start_angle!)
segments: count of Bèzier-curve segments, default is one segment for
each arc quarter (π/2)
transform: transformation Matrix applied to the wedge
"""
path = Path()
start_flag = True
for start, ctrl1, ctrl2, end in cubic_bezier_arc_parameters(
start_angle, end_angle, segments
):
if start_flag:
path.line_to(start)
start_flag = False
path.curve4_to(end, ctrl1, ctrl2)
path.line_to((0, 0, 0))
if transform is None:
return path
else:
return path.transform(transform)
def elliptic_transformation(
center: UVec = (0, 0, 0),
radius: float = 1,
ratio: float = 1,
rotation: float = 0,
) -> Matrix44:
"""Returns the transformation matrix to transform a unit circle into
an arbitrary circular- or elliptic arc.
Example how to create an ellipse with a major axis length of 3, a minor
axis length 1.5 and rotated about 90°::
m = elliptic_transformation(radius=3, ratio=0.5, rotation=math.pi / 2)
ellipse = shapes.unit_circle(transform=m)
Args:
center: curve center in WCS
radius: radius of the major axis in drawing units
ratio: ratio of minor axis to major axis
rotation: rotation angle about the z-axis in radians
"""
if radius < 1e-6:
raise ValueError(f"invalid radius: {radius}")
if ratio < 1e-6:
raise ValueError(f"invalid ratio: {ratio}")
scale_x = radius
scale_y = radius * ratio
return basic_transformation(center, (scale_x, scale_y, 1), rotation)
def rect(
width: float = 1, height: float = 1, transform: Matrix44 | None = None
) -> Path:
"""Returns a closed rectangle as a :class:`Path` object, with the center at
(0, 0, 0) and the given `width` and `height` in drawing units.
Args:
width: width of the rectangle in drawing units, width > 0
height: height of the rectangle in drawing units, height > 0
transform: transformation Matrix applied to the rectangle
"""
if width < 1e-9:
raise ValueError(f"invalid width: {width}")
if height < 1e-9:
raise ValueError(f"invalid height: {height}")
w2 = float(width) / 2.0
h2 = float(height) / 2.0
path = converter.from_vertices(
[(w2, h2), (-w2, h2), (-w2, -h2), (w2, -h2)], close=True
)
if transform is None:
return path
else:
return path.transform(transform)
def ngon(
count: int,
length: float | None = None,
radius: float = 1.0,
transform: Matrix44 | None = None,
) -> Path:
"""Returns a `regular polygon <https://en.wikipedia.org/wiki/Regular_polygon>`_
a :class:`Path` object, with the center at (0, 0, 0).
The polygon size is determined by the edge `length` or the circum `radius`
argument. If both are given `length` has higher priority. Default size is
a `radius` of 1. The ngon starts with the first vertex is on the x-axis!
The base geometry is created by function :func:`ezdxf.render.forms.ngon`.
Args:
count: count of polygon corners >= 3
length: length of polygon side
radius: circum radius, default is 1
transform: transformation Matrix applied to the ngon
"""
vertices = forms.ngon(count, length=length, radius=radius)
if transform is not None:
vertices = transform.transform_vertices(vertices)
return converter.from_vertices(vertices, close=True)
def star(count: int, r1: float, r2: float, transform: Matrix44 | None = None) -> Path:
"""Returns a `star shape <https://en.wikipedia.org/wiki/Star_polygon>`_ as
a :class:`Path` object, with the center at (0, 0, 0).
Argument `count` defines the count of star spikes, `r1` defines the radius
of the "outer" vertices and `r2` defines the radius of the "inner" vertices,
but this does not mean that `r1` has to be greater than `r2`.
The star shape starts with the first vertex is on the x-axis!
The base geometry is created by function :func:`ezdxf.render.forms.star`.
Args:
count: spike count >= 3
r1: radius 1
r2: radius 2
transform: transformation Matrix applied to the star
"""
vertices = forms.star(count, r1=r1, r2=r2)
if transform is not None:
vertices = transform.transform_vertices(vertices)
return converter.from_vertices(vertices, close=True)
def gear(
count: int,
top_width: float,
bottom_width: float,
height: float,
outside_radius: float,
transform: Matrix44 | None = None,
) -> Path:
"""
Returns a `gear <https://en.wikipedia.org/wiki/Gear>`_ (cogwheel) shape as
a :class:`Path` object, with the center at (0, 0, 0).
The base geometry is created by function :func:`ezdxf.render.forms.gear`.
.. warning::
This function does not create correct gears for mechanical engineering!
Args:
count: teeth count >= 3
top_width: teeth width at outside radius
bottom_width: teeth width at base radius
height: teeth height; base radius = outside radius - height
outside_radius: outside radius
transform: transformation Matrix applied to the gear shape
"""
vertices = forms.gear(count, top_width, bottom_width, height, outside_radius)
if transform is not None:
vertices = transform.transform_vertices(vertices)
return converter.from_vertices(vertices, close=True)
def helix(
radius: float,
pitch: float,
turns: float,
ccw=True,
segments: int = 4,
) -> Path:
"""
Returns a `helix <https://en.wikipedia.org/wiki/Helix>`_ as
a :class:`Path` object.
The center of the helix is always (0, 0, 0), a positive `pitch` value
creates a helix along the +z-axis, a negative value along the -z-axis.
Args:
radius: helix radius
pitch: the height of one complete helix turn
turns: count of turns
ccw: creates a counter-clockwise turning (right-handed) helix if ``True``
segments: cubic Bezier segments per turn
"""
# Source of algorithm: https://www.arc.id.au/HelixDrawing.html
def bezier_ctrl_points(b, angle, segments):
zz = 0.0
z_step = angle / segments * p
z_step_2 = z_step * 0.5
for _, v1, v2, v3 in cubic_bezier_arc_parameters(0, angle, segments):
yield (
Vec3(v1.x * rx, v1.y * ry, zz + z_step_2 - b),
Vec3(v2.x * rx, v2.y * ry, zz + z_step_2 + b),
Vec3(v3.x * rx, v3.y * ry, zz + z_step),
)
zz += z_step
def param_b(alpha: float) -> float:
cos_a = math.cos(alpha)
b_1 = (1.0 - cos_a) * (3.0 - cos_a) * alpha * p
b_2 = math.sin(alpha) * (4.0 - cos_a) * math.tan(alpha)
return b_1 / b_2
rx = radius
ry = radius
if not ccw:
ry = -ry
path = Path(start=(radius, 0, 0))
p = pitch / math.tau
b = param_b(math.pi / segments)
full_turns = int(math.floor(turns))
if full_turns > 0:
curve_params = list(bezier_ctrl_points(b, math.tau, segments))
for _ in range(full_turns):
z = Vec3(0, 0, path.end.z)
for v1, v2, v3 in curve_params:
path.curve4_to(z + v3, z + v1, z + v2)
reminder = turns - full_turns
if reminder > 1e-6:
segments = math.ceil(reminder * 4)
b = param_b(reminder * math.pi / segments)
z = Vec3(0, 0, path.end.z)
for v1, v2, v3 in bezier_ctrl_points(b, math.tau * reminder, segments):
path.curve4_to(z + v3, z + v1, z + v2)
return path