Files
stepanalyser/.venv/lib/python3.12/site-packages/ezdxf/acc/bezier3p.pyx
Christian Anetzberger a197de9456 initial
2026-01-22 20:23:51 +01:00

223 lines
6.4 KiB
Cython

# cython: language_level=3
# Copyright (c) 2021-2024 Manfred Moitzi
# License: MIT License
from typing import TYPE_CHECKING, Sequence
from .vector cimport Vec3, isclose, v3_dist, v3_lerp, v3_add, Vec2
from .matrix44 cimport Matrix44
import warnings
if TYPE_CHECKING:
from ezdxf.math import UVec
__all__ = ['Bezier3P']
cdef extern from "constants.h":
const double ABS_TOL
const double REL_TOL
cdef double RECURSION_LIMIT = 1000
cdef class Bezier3P:
cdef:
FastQuadCurve curve # pyright: ignore
readonly Vec3 start_point
Vec3 cp1
readonly Vec3 end_point
def __cinit__(self, defpoints: Sequence[UVec]):
if not isinstance(defpoints[0], (Vec2, Vec3)):
warnings.warn(
DeprecationWarning,
"Bezier3P requires defpoints of type Vec2 or Vec3 in the future",
)
if len(defpoints) == 3:
self.start_point = Vec3(defpoints[0])
self.cp1 = Vec3(defpoints[1])
self.end_point = Vec3(defpoints[2])
self.curve = FastQuadCurve(
self.start_point,
self.cp1,
self.end_point
)
else:
raise ValueError("Three control points required.")
@property
def control_points(self) -> tuple[Vec3, Vec3, Vec3]:
return self.start_point, self.cp1, self.end_point
def __reduce__(self):
return Bezier3P, (self.control_points,)
def point(self, double t) -> Vec3:
if 0.0 <= t <= 1.0:
return self.curve.point(t)
else:
raise ValueError("t not in range [0 to 1]")
def tangent(self, double t) -> Vec3:
if 0.0 <= t <= 1.0:
return self.curve.tangent(t)
else:
raise ValueError("t not in range [0 to 1]")
def approximate(self, int segments) -> list[Vec3]:
cdef double delta_t
cdef int segment
cdef list points = [self.start_point]
if segments < 1:
raise ValueError(segments)
delta_t = 1.0 / segments
for segment in range(1, segments):
points.append(self.point(delta_t * segment))
points.append(self.end_point)
return points
def flattening(self, double distance, int segments = 4) -> list[Vec3]:
cdef double dt = 1.0 / segments
cdef double t0 = 0.0, t1
cdef _Flattening f = _Flattening(self, distance)
cdef Vec3 start_point = self.start_point
cdef Vec3 end_point
while t0 < 1.0:
t1 = t0 + dt
if isclose(t1, 1.0, REL_TOL, ABS_TOL):
end_point = self.end_point
t1 = 1.0
else:
end_point = self.curve.point(t1)
f.reset_recursion_check()
f.flatten(start_point, end_point, t0, t1)
if f.has_recursion_error():
raise RecursionError(
"Bezier3P flattening error, check for very large coordinates"
)
t0 = t1
start_point = end_point
return f.points
def approximated_length(self, segments: int = 128) -> float:
cdef double length = 0.0
cdef bint start_flag = 0
cdef Vec3 prev_point, point
for point in self.approximate(segments):
if start_flag:
length += v3_dist(prev_point, point)
else:
start_flag = 1
prev_point = point
return length
def reverse(self) -> Bezier3P:
return Bezier3P((self.end_point, self.cp1, self.start_point))
def transform(self, Matrix44 m) -> Bezier3P:
return Bezier3P(tuple(m.transform_vertices(self.control_points)))
cdef class _Flattening:
cdef FastQuadCurve curve # pyright: ignore
cdef double distance
cdef list points
cdef int _recursion_level
cdef int _recursion_error
def __cinit__(self, Bezier3P curve, double distance):
self.curve = curve.curve
self.distance = distance
self.points = [curve.start_point]
self._recursion_level = 0
self._recursion_error = 0
cdef has_recursion_error(self):
return self._recursion_error
cdef reset_recursion_check(self):
self._recursion_level = 0
self._recursion_error = 0
cdef flatten(
self,
Vec3 start_point,
Vec3 end_point,
double start_t,
double end_t
):
if self._recursion_level > RECURSION_LIMIT:
self._recursion_error = 1
return
self._recursion_level += 1
cdef double mid_t = (start_t + end_t) * 0.5
cdef Vec3 mid_point = self.curve.point(mid_t)
cdef double d = v3_dist(mid_point, v3_lerp(start_point, end_point, 0.5))
if d < self.distance:
self.points.append(end_point)
else:
self.flatten(start_point, mid_point, start_t, mid_t)
self.flatten(mid_point, end_point, mid_t, end_t)
self._recursion_level -= 1
cdef class FastQuadCurve:
cdef:
double[3] offset
double[3] p1
double[3] p2
def __cinit__(self, Vec3 p0, Vec3 p1, Vec3 p2):
self.offset[0] = p0.x
self.offset[1] = p0.y
self.offset[2] = p0.z
# 1st control point (p0) is always (0, 0, 0)
self.p1[0] = p1.x - p0.x
self.p1[1] = p1.y - p0.y
self.p1[2] = p1.z - p0.z
self.p2[0] = p2.x - p0.x
self.p2[1] = p2.y - p0.y
self.p2[2] = p2.z - p0.z
cdef Vec3 point(self, double t):
# 1st control point (p0) is always (0, 0, 0)
# => p0 * a is always (0, 0, 0)
cdef:
Vec3 result = Vec3()
# double a = (1 - t) ** 2
double b = 2.0 * t * (1.0 - t)
double c = t * t
iadd_mul(result, self.p1, b)
iadd_mul(result, self.p2, c)
# add offset at last - it is maybe very large
result.x += self.offset[0]
result.y += self.offset[1]
result.z += self.offset[2]
return result
cdef Vec3 tangent(self, double t):
# tangent vector is independent from offset location!
cdef:
Vec3 result = Vec3()
# double a = -2 * (1 - t)
double b = 2.0 - 4.0 * t
double c = 2.0 * t
iadd_mul(result, self.p1, b)
iadd_mul(result, self.p2, c)
return result
cdef void iadd_mul(Vec3 a, double[3] b, double c):
a.x += b[0] * c
a.y += b[1] * c
a.z += b[2] * c