Files
stepanalyser/.venv/lib/python3.12/site-packages/ezdxf/acc/construct.pyx
Christian Anetzberger a197de9456 initial
2026-01-22 20:23:51 +01:00

359 lines
11 KiB
Cython

# cython: language_level=3
# Copyright (c) 2020-2024, Manfred Moitzi
# License: MIT License
from typing import Iterable, TYPE_CHECKING, Sequence, Optional
from libc.math cimport fabs, M_PI, M_PI_2, M_PI_4, M_E, sin, tan, pow, atan, log
from .vector cimport (
isclose,
Vec2,
v2_isclose,
Vec3,
v3_sub,
v3_add,
v3_mul,
v3_normalize,
v3_cross,
v3_magnitude_sqr,
v3_isclose,
)
import cython
if TYPE_CHECKING:
from ezdxf.math import UVec
cdef extern from "constants.h":
const double ABS_TOL
const double REL_TOL
const double M_TAU
cdef double RAD_ABS_TOL = 1e-15
cdef double DEG_ABS_TOL = 1e-13
cdef double TOLERANCE = 1e-10
def has_clockwise_orientation(vertices: Iterable[UVec]) -> bool:
""" Returns True if 2D `vertices` have clockwise orientation. Ignores
z-axis of all vertices.
Args:
vertices: iterable of :class:`Vec2` compatible objects
Raises:
ValueError: less than 3 vertices
"""
cdef list _vertices = [Vec2(v) for v in vertices]
if len(_vertices) < 3:
raise ValueError('At least 3 vertices required.')
cdef Vec2 p1 = <Vec2> _vertices[0]
cdef Vec2 p2 = <Vec2> _vertices[-1]
cdef double s = 0.0
cdef Py_ssize_t index
# Using the same tolerance as the Python implementation:
if not v2_isclose(p1, p2, REL_TOL, ABS_TOL):
_vertices.append(p1)
for index in range(1, len(_vertices)):
p2 = <Vec2> _vertices[index]
s += (p2.x - p1.x) * (p2.y + p1.y)
p1 = p2
return s > 0.0
def intersection_line_line_2d(
line1: Sequence[Vec2],
line2: Sequence[Vec2],
bint virtual=True,
double abs_tol=TOLERANCE) -> Optional[Vec2]:
"""
Compute the intersection of two lines in the xy-plane.
Args:
line1: start- and end point of first line to test
e.g. ((x1, y1), (x2, y2)).
line2: start- and end point of second line to test
e.g. ((x3, y3), (x4, y4)).
virtual: ``True`` returns any intersection point, ``False`` returns
only real intersection points.
abs_tol: tolerance for intersection test.
Returns:
``None`` if there is no intersection point (parallel lines) or
intersection point as :class:`Vec2`
"""
# Algorithm based on: http://paulbourke.net/geometry/pointlineplane/
# chapter: Intersection point of two line segments in 2 dimensions
cdef Vec2 s1, s2, c1, c2, res
cdef double s1x, s1y, s2x, s2y, c1x, c1y, c2x, c2y, den, us, uc
cdef double lwr = 0.0, upr = 1.0
s1 = line1[0]
s2 = line1[1]
c1 = line2[0]
c2 = line2[1]
s1x = s1.x
s1y = s1.y
s2x = s2.x
s2y = s2.y
c1x = c1.x
c1y = c1.y
c2x = c2.x
c2y = c2.y
den = (c2y - c1y) * (s2x - s1x) - (c2x - c1x) * (s2y - s1y)
if fabs(den) <= abs_tol:
return None
# den near zero is checked by if-statement above:
with cython.cdivision(True):
us = ((c2x - c1x) * (s1y - c1y) - (c2y - c1y) * (s1x - c1x)) / den
res = Vec2(s1x + us * (s2x - s1x), s1y + us * (s2y - s1y))
if virtual:
return res
# 0 = intersection point is the start point of the line
# 1 = intersection point is the end point of the line
# otherwise: linear interpolation
if lwr <= us <= upr: # intersection point is on the subject line
with cython.cdivision(True):
uc = ((s2x - s1x) * (s1y - c1y) - (s2y - s1y) * (s1x - c1x)) / den
if lwr <= uc <= upr: # intersection point is on the clipping line
return res
return None
cdef double _determinant(Vec3 v1, Vec3 v2, Vec3 v3):
return v1.x * v2.y * v3.z + v1.y * v2.z * v3.x + \
v1.z * v2.x * v3.y - v1.z * v2.y * v3.x - \
v1.x * v2.z * v3.y - v1.y * v2.x * v3.z
def intersection_ray_ray_3d(
ray1: tuple[Vec3, Vec3],
ray2: tuple[Vec3, Vec3],
double abs_tol=TOLERANCE
) -> Sequence[Vec3]:
"""
Calculate intersection of two 3D rays, returns a 0-tuple for parallel rays,
a 1-tuple for intersecting rays and a 2-tuple for not intersecting and not
parallel rays with points of closest approach on each ray.
Args:
ray1: first ray as tuple of two points as Vec3() objects
ray2: second ray as tuple of two points as Vec3() objects
abs_tol: absolute tolerance for comparisons
"""
# source: http://www.realtimerendering.com/intersections.html#I304
cdef:
Vec3 o2_o1
double det1, det2
Vec3 o1 = Vec3(ray1[0])
Vec3 p1 = Vec3(ray1[1])
Vec3 o2 = Vec3(ray2[0])
Vec3 p2 = Vec3(ray2[1])
Vec3 d1 = v3_normalize(v3_sub(p1, o1), 1.0)
Vec3 d2 = v3_normalize(v3_sub(p2, o2), 1.0)
Vec3 d1xd2 = v3_cross(d1, d2)
double denominator = v3_magnitude_sqr(d1xd2)
if denominator <= abs_tol:
# ray1 is parallel to ray2
return tuple()
else:
o2_o1 = v3_sub(o2, o1)
det1 = _determinant(o2_o1, d2, d1xd2)
det2 = _determinant(o2_o1, d1, d1xd2)
with cython.cdivision(True): # denominator check is already done
p1 = v3_add(o1, v3_mul(d1, (det1 / denominator)))
p2 = v3_add(o2, v3_mul(d2, (det2 / denominator)))
if v3_isclose(p1, p2, abs_tol, abs_tol):
# ray1 and ray2 have an intersection point
return p1,
else:
# ray1 and ray2 do not have an intersection point,
# p1 and p2 are the points of closest approach on each ray
return p1, p2
def arc_angle_span_deg(double start, double end) -> float:
if isclose(start, end, REL_TOL, DEG_ABS_TOL):
return 0.0
start %= 360.0
if isclose(start, end % 360.0, REL_TOL, DEG_ABS_TOL):
return 360.0
if not isclose(end, 360.0, REL_TOL, DEG_ABS_TOL):
end %= 360.0
if end < start:
end += 360.0
return end - start
def arc_angle_span_rad(double start, double end) -> float:
if isclose(start, end, REL_TOL, RAD_ABS_TOL):
return 0.0
start %= M_TAU
if isclose(start, end % M_TAU, REL_TOL, RAD_ABS_TOL):
return M_TAU
if not isclose(end, M_TAU, REL_TOL, RAD_ABS_TOL):
end %= M_TAU
if end < start:
end += M_TAU
return end - start
def is_point_in_polygon_2d(
point: Vec2, polygon: list[Vec2], double abs_tol=TOLERANCE
) -> int:
"""
Test if `point` is inside `polygon`. Returns +1 for inside, 0 for on the
boundary and -1 for outside.
Supports convex and concave polygons with clockwise or counter-clockwise oriented
polygon vertices. Does not raise an exception for degenerated polygons.
Args:
point: 2D point to test as :class:`Vec2`
polygon: list of 2D points as :class:`Vec2`
abs_tol: tolerance for distance check
Returns:
+1 for inside, 0 for on the boundary, -1 for outside
"""
# Source: http://www.faqs.org/faqs/graphics/algorithms-faq/
# Subject 2.03: How do I find if a point lies within a polygon?
# Numpy version was just 10x faster, this version is 23x faster than the Python
# version!
cdef double a, b, c, d, x, y, x1, y1, x2, y2
cdef list vertices = polygon
cdef Vec2 p1, p2
cdef int size, last, i
cdef bint inside = 0
size = len(vertices)
if size < 3: # empty polygon
return -1
last = size - 1
p1 = <Vec2> vertices[0]
p2 = <Vec2> vertices[last]
if v2_isclose(p1, p2, REL_TOL, ABS_TOL): # open polygon
size -= 1
last -= 1
if size < 3:
return -1
x = point.x
y = point.y
p1 = <Vec2> vertices[last]
x1 = p1.x
y1 = p1.y
for i in range(size):
p2 = <Vec2> vertices[i]
x2 = p2.x
y2 = p2.y
# is point on polygon boundary line:
# is point in x-range of line
a, b = (x2, x1) if x2 < x1 else (x1, x2)
if a <= x <= b:
# is point in y-range of line
c, d = (y2, y1) if y2 < y1 else (y1, y2)
if (c <= y <= d) and fabs(
(y2 - y1) * x - (x2 - x1) * y + (x2 * y1 - y2 * x1)
) <= abs_tol:
return 0 # on boundary line
if ((y1 <= y < y2) or (y2 <= y < y1)) and (
x < (x2 - x1) * (y - y1) / (y2 - y1) + x1
):
inside = not inside
x1 = x2
y1 = y2
if inside:
return 1 # inside polygon
else:
return -1 # outside polygon
cdef double WGS84_SEMI_MAJOR_AXIS = 6378137
cdef double WGS84_SEMI_MINOR_AXIS = 6356752.3142
cdef double WGS84_ELLIPSOID_ECCENTRIC = 0.08181919092890624
cdef double RADIANS = M_PI / 180.0
cdef double DEGREES = 180.0 / M_PI
def gps_to_world_mercator(double longitude, double latitude) -> tuple[float, float]:
"""Transform GPS (long/lat) to World Mercator.
Transform WGS84 `EPSG:4326 <https://epsg.io/4326>`_ location given as
latitude and longitude in decimal degrees as used by GPS into World Mercator
cartesian 2D coordinates in meters `EPSG:3395 <https://epsg.io/3395>`_.
Args:
longitude: represents the longitude value (East-West) in decimal degrees
latitude: represents the latitude value (North-South) in decimal degrees.
"""
# From: https://epsg.io/4326
# EPSG:4326 WGS84 - World Geodetic System 1984, used in GPS
# To: https://epsg.io/3395
# EPSG:3395 - World Mercator
# Source: https://gis.stackexchange.com/questions/259121/transformation-functions-for-epsg3395-projection-vs-epsg3857
longitude = longitude * RADIANS # east
latitude = latitude * RADIANS # north
cdef double e_sin_lat = sin(latitude) * WGS84_ELLIPSOID_ECCENTRIC
cdef double c = pow(
(1.0 - e_sin_lat) / (1.0 + e_sin_lat), WGS84_ELLIPSOID_ECCENTRIC / 2.0
) # 7-7 p.44
y = WGS84_SEMI_MAJOR_AXIS * log(tan(M_PI_4 + latitude / 2.0) * c) # 7-7 p.44
x = WGS84_SEMI_MAJOR_AXIS * longitude
return x, y
def world_mercator_to_gps(double x, double y, double tol = 1e-6) -> tuple[float, float]:
"""Transform World Mercator to GPS.
Transform WGS84 World Mercator `EPSG:3395 <https://epsg.io/3395>`_
location given as cartesian 2D coordinates x, y in meters into WGS84 decimal
degrees as longitude and latitude `EPSG:4326 <https://epsg.io/4326>`_ as
used by GPS.
Args:
x: coordinate WGS84 World Mercator
y: coordinate WGS84 World Mercator
tol: accuracy for latitude calculation
"""
# From: https://epsg.io/3395
# EPSG:3395 - World Mercator
# To: https://epsg.io/4326
# EPSG:4326 WGS84 - World Geodetic System 1984, used in GPS
# Source: Map Projections - A Working Manual
# https://pubs.usgs.gov/pp/1395/report.pdf
cdef double eccentric_2 = WGS84_ELLIPSOID_ECCENTRIC / 2.0
cdef double t = pow(M_E, (-y / WGS84_SEMI_MAJOR_AXIS)) # 7-10 p.44
cdef double e_sin_lat, latitude, latitude_prev
latitude_prev = M_PI_2 - 2.0 * atan(t) # 7-11 p.45
while True:
e_sin_lat = sin(latitude_prev) * WGS84_ELLIPSOID_ECCENTRIC
latitude = M_PI_2 - 2.0 * atan(
t * pow(((1.0 - e_sin_lat) / (1.0 + e_sin_lat)), eccentric_2)
) # 7-9 p.44
if fabs(latitude - latitude_prev) < tol:
break
latitude_prev = latitude
longitude = x / WGS84_SEMI_MAJOR_AXIS # 7-12 p.45
return longitude * DEGREES, latitude * DEGREES