Files
stepanalyser/.venv/lib/python3.12/site-packages/ezdxf/acc/bspline.pyx
Christian Anetzberger a197de9456 initial
2026-01-22 20:23:51 +01:00

401 lines
13 KiB
Cython

# cython: language_level=3
# Copyright (c) 2021-2024, Manfred Moitzi
# License: MIT License
from typing import Iterable, Sequence, Iterator
import cython
from cpython.mem cimport PyMem_Malloc, PyMem_Free
from .vector cimport Vec3, isclose, v3_mul, v3_sub
__all__ = ['Basis', 'Evaluator']
cdef extern from "constants.h":
const double ABS_TOL
const double REL_TOL
const int MAX_SPLINE_ORDER
# factorial from 0 to 18
cdef double[19] FACTORIAL = [
1., 1., 2., 6., 24., 120., 720., 5040., 40320., 362880., 3628800.,
39916800., 479001600., 6227020800., 87178291200., 1307674368000.,
20922789888000., 355687428096000., 6402373705728000.
]
NULL_LIST = [0.0]
ONE_LIST = [1.0]
cdef Vec3 NULLVEC = Vec3()
@cython.cdivision(True)
cdef double binomial_coefficient(int k, int i):
cdef double k_fact = FACTORIAL[k]
cdef double i_fact = FACTORIAL[i]
cdef double k_i_fact
if i > k:
return 0.0
k_i_fact = FACTORIAL[k - i]
return k_fact / (k_i_fact * i_fact)
@cython.boundscheck(False)
cdef int bisect_right(double *a, double x, int lo, int hi):
cdef int mid
while lo < hi:
mid = (lo + hi) // 2
if x < a[mid]:
hi = mid
else:
lo = mid + 1
return lo
cdef reset_double_array(double *a, int count, double value):
cdef int i
for i in range(count):
a[i] = value
cdef class Basis:
""" Immutable Basis function class. """
# public:
cdef readonly int order
cdef readonly int count
cdef readonly double max_t
cdef tuple weights_ # public attribute for Cython Evaluator
# private:
cdef double *_knots
cdef int knot_count
def __cinit__(
self, knots: Iterable[float],
int order,
int count,
weights: Sequence[float] = None
):
if order < 2 or order >= MAX_SPLINE_ORDER:
raise ValueError('invalid order')
self.order = order
if count < 2:
raise ValueError('invalid count')
self.count = count
self.knot_count = self.order + self.count
self.weights_ = tuple(float(x) for x in weights) if weights else tuple()
cdef Py_ssize_t i = len(self.weights_)
if i != 0 and i != self.count:
raise ValueError('invalid weight count')
knots = [float(x) for x in knots]
if len(knots) != self.knot_count:
raise ValueError('invalid knot count')
self._knots = <double *> PyMem_Malloc(self.knot_count * sizeof(double))
for i in range(self.knot_count):
self._knots[i] = knots[i]
self.max_t = self._knots[self.knot_count - 1]
def __dealloc__(self):
PyMem_Free(self._knots)
@property
def degree(self) -> int:
return self.order - 1
@property
def knots(self) -> tuple[float, ...]:
return tuple(x for x in self._knots[:self.knot_count])
@property
def weights(self) -> tuple[float, ...]:
return self.weights_
@property
def is_rational(self) -> bool:
""" Returns ``True`` if curve is a rational B-spline. (has weights) """
return bool(self.weights_)
cpdef list basis_vector(self, double t):
""" Returns the expanded basis vector. """
cdef int span = self.find_span(t)
cdef int p = self.order - 1
cdef int front = span - p
cdef int back = self.count - span - 1
cdef list result
if front > 0:
result = NULL_LIST * front
result.extend(self.basis_funcs(span, t))
else:
result = self.basis_funcs(span, t)
if back > 0:
result.extend(NULL_LIST * back)
return result
cpdef int find_span(self, double u):
""" Determine the knot span index. """
# Linear search is more reliable than binary search of the Algorithm A2.1
# from The NURBS Book by Piegl & Tiller.
cdef double *knots = self._knots
cdef int count = self.count # text book: n+1
cdef int p = self.order - 1
cdef int span
if u >= knots[count]: # special case
return count - 1
# common clamped spline:
if knots[p] == 0.0: # use binary search
# This is fast and works most of the time,
# but Test 621 : test_weired_closed_spline()
# goes into an infinity loop, because of
# a weird knot configuration.
return bisect_right(knots, u, p, count) - 1
else: # use linear search
span = 0
while knots[span] <= u and span < count:
span += 1
return span - 1
cpdef list basis_funcs(self, int span, double u):
# Source: The NURBS Book: Algorithm A2.2
cdef int order = self.order
cdef double *knots = self._knots
cdef double[MAX_SPLINE_ORDER] N, left, right
cdef list result
reset_double_array(N, order, 0.0)
reset_double_array(left, order, 0.0)
reset_double_array(right, order, 0.0)
cdef int j, r, i1
cdef double temp, saved, temp_r, temp_l
N[0] = 1.0
for j in range(1, order):
i1 = span + 1 - j
if i1 < 0:
i1 = 0
left[j] = u - knots[i1]
right[j] = knots[span + j] - u
saved = 0.0
for r in range(j):
temp_r = right[r + 1]
temp_l = left[j - r]
temp = N[r] / (temp_r + temp_l)
N[r] = saved + temp_r * temp
saved = temp_l * temp
N[j] = saved
result = [x for x in N[:order]]
if self.is_rational:
return self.span_weighting(result, span)
else:
return result
cpdef list span_weighting(self, nbasis: list[float], int span):
cdef list products = [
nb * w for nb, w in zip(
nbasis,
self.weights_[span - self.order + 1: span + 1]
)
]
s = sum(products)
if s != 0:
return [p / s for p in products]
else:
return NULL_LIST * len(nbasis)
cpdef list basis_funcs_derivatives(self, int span, double u, int n = 1):
# pyright: reportUndefinedVariable=false
# pyright flags Cython multi-arrays incorrect:
# cdef double[4][4] a # this is a valid array definition in Cython!
# https://cython.readthedocs.io/en/latest/src/userguide/language_basics.html#c-arrays
# Source: The NURBS Book: Algorithm A2.3
cdef int order = self.order
cdef int p = order - 1
if n > p:
n = p
cdef double *knots = self._knots
cdef double[MAX_SPLINE_ORDER] left, right
reset_double_array(left, order, 1.0)
reset_double_array(right, order, 1.0)
cdef double[MAX_SPLINE_ORDER][MAX_SPLINE_ORDER] ndu # pyright: ignore
reset_double_array(<double *> ndu, MAX_SPLINE_ORDER*MAX_SPLINE_ORDER, 1.0)
cdef int j, r, i1
cdef double temp, saved, tmp_r, tmp_l
for j in range(1, order):
i1 = span + 1 - j
if i1 < 0:
i1 = 0
left[j] = u - knots[i1]
right[j] = knots[span + j] - u
saved = 0.0
for r in range(j):
# lower triangle
tmp_r = right[r + 1]
tmp_l = left[j - r]
ndu[j][r] = tmp_r + tmp_l
temp = ndu[r][j - 1] / ndu[j][r]
# upper triangle
ndu[r][j] = saved + (tmp_r * temp)
saved = tmp_l * temp
ndu[j][j] = saved
# load the basis_vector functions
cdef double[MAX_SPLINE_ORDER][MAX_SPLINE_ORDER] derivatives # pyright: ignore
reset_double_array(
<double *> derivatives, MAX_SPLINE_ORDER*MAX_SPLINE_ORDER, 0.0
)
for j in range(order):
derivatives[0][j] = ndu[j][p]
# loop over function index
cdef double[2][MAX_SPLINE_ORDER] a # pyright: ignore
reset_double_array(<double *> a, 2*MAX_SPLINE_ORDER, 1.0)
cdef int s1, s2, k, rk, pk, j1, j2, t
cdef double d
for r in range(order):
s1 = 0
s2 = 1
# alternate rows in array a
a[0][0] = 1.0
# loop to compute kth derivative
for k in range(1, n + 1):
d = 0.0
rk = r - k
pk = p - k
if r >= k:
a[s2][0] = a[s1][0] / ndu[pk + 1][rk]
d = a[s2][0] * ndu[rk][pk]
if rk >= -1:
j1 = 1
else:
j1 = -rk
if (r - 1) <= pk:
j2 = k - 1
else:
j2 = p - r
for j in range(j1, j2 + 1):
a[s2][j] = (a[s1][j] - a[s1][j - 1]) / ndu[pk + 1][rk + j]
d += (a[s2][j] * ndu[rk + j][pk])
if r <= pk:
a[s2][k] = -a[s1][k - 1] / ndu[pk + 1][r]
d += (a[s2][k] * ndu[r][pk])
derivatives[k][r] = d
# Switch rows
t = s1
s1 = s2
s2 = t
# Multiply through by the correct factors
cdef double rr = p
for k in range(1, n + 1):
for j in range(order):
derivatives[k][j] *= rr
rr *= (p - k)
# return result as Python lists
cdef list result = [], row
for k in range(0, n + 1):
row = []
result.append(row)
for j in range(order):
row.append(derivatives[k][j])
return result
cdef class Evaluator:
""" B-spline curve point and curve derivative evaluator. """
cdef Basis _basis
cdef tuple _control_points
def __cinit__(self, basis: Basis, control_points: Sequence[Vec3]):
self._basis = basis
self._control_points = Vec3.tuple(control_points)
cpdef Vec3 point(self, double u):
# Source: The NURBS Book: Algorithm A3.1
cdef Basis basis = self._basis
if isclose(u, basis.max_t, REL_TOL, ABS_TOL):
u = basis.max_t
cdef:
int p = basis.order - 1
int span = basis.find_span(u)
list N = basis.basis_funcs(span, u)
int i
Vec3 cpoint, v3_sum = Vec3()
tuple control_points = self._control_points
double factor
for i in range(p + 1):
factor = <double> N[i]
cpoint = <Vec3> control_points[span - p + i]
v3_sum.x += cpoint.x * factor
v3_sum.y += cpoint.y * factor
v3_sum.z += cpoint.z * factor
return v3_sum
def points(self, t: Iterable[float]) -> Iterator[Vec3]:
cdef double u
for u in t:
yield self.point(u)
cpdef list derivative(self, double u, int n = 1):
""" Return point and derivatives up to n <= degree for parameter u. """
# Source: The NURBS Book: Algorithm A3.2
cdef Basis basis = self._basis
if isclose(u, basis.max_t, REL_TOL, ABS_TOL):
u = basis.max_t
cdef:
list CK = [], CKw = [], wders = []
tuple control_points = self._control_points
tuple weights
Vec3 cpoint, v3_sum
double wder, bas_func_weight, bas_func
int k, j, i, p = basis.degree
int span = basis.find_span(u)
list basis_funcs_ders = basis.basis_funcs_derivatives(span, u, n)
if basis.is_rational:
# Homogeneous point representation required:
# (x*w, y*w, z*w, w)
weights = basis.weights_
for k in range(n + 1):
v3_sum = Vec3()
wder = 0.0
for j in range(p + 1):
i = span - p + j
bas_func_weight = basis_funcs_ders[k][j] * weights[i]
# control_point * weight * bas_func_der = (x*w, y*w, z*w) * bas_func_der
cpoint = <Vec3> control_points[i]
v3_sum.x += cpoint.x * bas_func_weight
v3_sum.y += cpoint.y * bas_func_weight
v3_sum.z += cpoint.z * bas_func_weight
wder += bas_func_weight
CKw.append(v3_sum)
wders.append(wder)
# Source: The NURBS Book: Algorithm A4.2
for k in range(n + 1):
v3_sum = CKw[k]
for j in range(1, k + 1):
bas_func_weight = binomial_coefficient(k, j) * wders[j]
v3_sum = v3_sub(
v3_sum,
v3_mul(CK[k - j], bas_func_weight)
)
CK.append(v3_sum / wders[0])
else:
for k in range(n + 1):
v3_sum = Vec3()
for j in range(p + 1):
bas_func = basis_funcs_ders[k][j]
cpoint = <Vec3> control_points[span - p + j]
v3_sum.x += cpoint.x * bas_func
v3_sum.y += cpoint.y * bas_func
v3_sum.z += cpoint.z * bas_func
CK.append(v3_sum)
return CK
def derivatives(self, t: Iterable[float], int n = 1) -> Iterator[list[Vec3]]:
cdef double u
for u in t:
yield self.derivative(u, n)